Phase behavior of polymer blends with reversible crosslinks—A self-consistent field theory study

被引:0
|
作者
Thomas Gruhn
Heike Emmerich
机构
[1] University of Bayreuth,Material and Process Simulation (MPS)
来源
关键词
polymer; nanostructure; phase transformation;
D O I
暂无
中图分类号
学科分类号
摘要
An extended version of self-consistent field (SCF) theory that was recently introduced by the authors [Li et al., J. Chem. Phys.137, 024906, (2012)] is used to study the phase behavior of a polymer blend with reversible crosslinks. The system consists of symmetric AB diblock copolymers and homopolymers of type A and B. We consider reversible crosslinks that can form between the diblock copolymers with a crosslink strength z and crosslink weights ωA and ωB for monomers of type A and B, respectively. Crosslinks between homopolymers are disabled. We present a phase diagram as a function of the A fraction of homopolymers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{{\alpha }}^{{\rm{rel}}}$$\end{document}, the crosslink strength z, and the crosslink asymmetry ∆ω = ωA − ωB. A hexagonal phase is found for suitably large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{{\alpha }}^{{\rm{rel}}}$$\end{document}, and suitably small z and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {\Delta {{\omega }}} \right|$$\end{document}. Otherwise the system forms a lamellar phase. A deeper insight into the phase behavior is gained from analyzing the free energy contributions in the hexagonal and the lamellar phase with the help of the capabilities of the extended SCF theory developed by us.
引用
收藏
页码:3079 / 3085
页数:6
相关论文
共 50 条
  • [1] Phase behavior of polymer blends with reversible crosslinks-A self-consistent field theory study
    Gruhn, Thomas
    Emmerich, Heike
    JOURNAL OF MATERIALS RESEARCH, 2013, 28 (22) : 3079 - 3085
  • [2] Nucleation in binary polymer blends: A self-consistent field study
    Wood, SM
    Wang, ZG
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (05): : 2289 - 2300
  • [3] Numerical self-consistent field theory of multicomponent polymer blends in the Gibbs ensemble
    Mester, Zoltan
    Lynd, Nathaniel A.
    Fredrickson, Glenn H.
    SOFT MATTER, 2013, 9 (47) : 11288 - 11294
  • [4] A self-consistent field study of the wetting transition in binary polymer blends
    Genzer, J
    Composto, RJ
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (03): : 1257 - 1263
  • [5] A self-consistent field study of the wetting transition in binary polymer blends - Comment
    Pereira, GG
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (09): : 3740 - 3741
  • [6] Thermodynamically self-consistent theory of binary crystalline polymer blends
    Matkar, Rushikesh
    Kyu, Thein
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [7] Phase Behavior of Rod-Coil Diblock Copolymer and Homopolymer Blends from Self-Consistent Field Theory
    Song, Wendi
    Tang, Ping
    Qiu, Feng
    Yang, Yuliang
    Shi, An-Chang
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (26): : 8390 - 8400
  • [8] Self-consistent field lattice model study on the phase behavior of physically associating polymer solutions
    Han, Xiang-Gang
    Zhang, Cheng-Xiang
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (16):
  • [9] Numerical solution of polymer self-consistent field theory
    Ceniceros, HD
    Fredrickson, GH
    MULTISCALE MODELING & SIMULATION, 2004, 2 (03): : 452 - 474
  • [10] Gaming self-consistent field theory: Generative block polymer phase discovery
    Chen, Pengyu
    Dorfman, Kevin D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (45)