Maps between Banach algebras preserving the spectrum

被引:0
|
作者
A. Bourhim
J. Mashreghi
A. Stepanyan
机构
[1] Syracuse University,Department of Mathematics
[2] Université Laval,Département de mathématiques et de statistique
来源
Archiv der Mathematik | 2016年 / 107卷
关键词
Primary 47B49; Secondary 47A10; 47B48; 46H05; Banach algebras; Finite rank elements; Socle; Essential ideal; Nonlinear preservers; Spectrum; Peripheral spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} be unital semisimple complex Banach algebras, and let φ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi_1}$$\end{document} and φ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi_2}$$\end{document} be maps from A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} onto B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document}. We show that if the socle of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} is an essential ideal of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document}, and φ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi_1}$$\end{document} and φ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi_2}$$\end{document} satisfy σ(φ1(a)φ2(b))=σ(ab)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma\big(\varphi_1(a)\varphi_2(b)\big) = \sigma(ab)$$\end{document}for all a,b∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a,b\in \mathcal{A}}$$\end{document}, then φ1φ2(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi_1\varphi_2(1)}$$\end{document} and φ1(1)φ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi_1(1)\varphi_2}$$\end{document} coincide and are Jordan isomorphisms. We also show that a map φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} from A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} onto B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} satisfies σ(φ(a)φ(b)φ(a))=σ(aba)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma\big(\varphi(a)\varphi(b)\varphi(a)\big)=\sigma(aba)$$\end{document}for all a,b∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a,b\in \mathcal{A}}$$\end{document} if and only if φ(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi(1)}$$\end{document} is a central invertible element of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} for which φ(1)3=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi(1)^3=1}$$\end{document} and φ(1)2φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi(1)^2\varphi}$$\end{document} is a Jordan isomorphism.
引用
收藏
页码:609 / 621
页数:12
相关论文
共 50 条
  • [1] Maps between Banach algebras preserving the spectrum
    Bourhim, A.
    Mashreghi, J.
    Stepanyan, A.
    ARCHIV DER MATHEMATIK, 2016, 107 (06) : 609 - 621
  • [2] A NOTE ON PERIPHERALLY MULTIPLICATIVE MAPS ON BANACH ALGEBRAS
    Schulz, Francois
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (02): : 218 - 228
  • [3] LINEAR MAPS PRESERVING GENERALIZED INVERTIBILITY ON COMMUTATIVE BANACH ALGEBRAS
    Boudi, Nadia
    Youness, Hadder
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (04) : 1107 - 1114
  • [4] Multiplicatively spectrum-preserving maps of function algebras
    Rao, NV
    Roy, AK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (04) : 1135 - 1142
  • [5] BANACH FUNCTION ALGEBRAS AND CERTAIN POLYNOMIALLY NORM-PRESERVING MAPS
    Hosseini, Maliheh
    Sady, Fereshteh
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 6 (02): : 1 - 18
  • [6] MAPS PRESERVING THE SPECTRUM OF SKEW LIE PRODUCT OF OPERATORS
    Alzedan, Eman
    Mabrouk, Mohamed
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2022, 46 (04): : 525 - 532
  • [7] SPECTRALLY ADDITIVE MAPS ON BANACH ALGEBRAS
    Benjamin, R.
    Schulz, F.
    ACTA MATHEMATICA HUNGARICA, 2023, 170 (01) : 194 - 208
  • [8] Spectrum of commutators on Banach algebras
    Ouchrif S.
    Afrika Matematika, 2014, 25 (1) : 213 - 221
  • [9] Spectrally additive maps on Banach algebras
    R. Benjamin
    F. Schulz
    Acta Mathematica Hungarica, 2023, 170 : 194 - 208
  • [10] Trace and spectrum preserving linear mappings in Jordan-Banach algebras
    Bernard Aupetit
    Monatshefte für Mathematik, 1998, 125 : 179 - 187