Breakdown of Heteroclinic Connections in the Analytic Hopf-Zero Singularity: Rigorous Computation of the Stokes Constant

被引:0
|
作者
Inmaculada Baldomá
Maciej J. Capiński
Marcel Guardia
Tere M. Seara
机构
[1] Universitat Politècnica de Catalunya (UPC),Departament de Matemàtiques
[2] IMTECH,Departament de Matematiques i Informàtica
[3] Universitat Politècnica de Catalunya (UPC),undefined
[4] Centre de Recerca Matemàtica,undefined
[5] AGH University of Science and Technology,undefined
[6] Faculty of Applied Mathematics,undefined
[7] Universitat de Barcelona,undefined
来源
关键词
Unfoldings of Hopf-zero singularity; Stokes constant; Computer assisted proof; Inner equation; 37G10; 34C23; 65G20;
D O I
暂无
中图分类号
学科分类号
摘要
Consider analytic generic unfoldings of the three- dimensional conservative Hopf-zero singularity. Under open conditions on the parameters determining the singularity, the unfolding possesses two saddle-foci when the unfolding parameter is small enough. One of them has one-dimensional stable manifold and two-dimensional unstable manifold, whereas the other one has one- dimensional unstable manifold and two-dimensional stable manifold. Baldomá et al. (J Dyn Differ Equ 25(2):335–392, 2013) gave an asymptotic formula for the distance between the one-dimensional invariant manifolds in a suitable transverse section. This distance is exponentially small with respect to the perturbative parameter, and it depends on what is usually called a Stokes constant. The nonvanishing of this constant implies that the distance between the invariant manifolds at the section is not zero. However, up to now there do not exist analytic techniques to check that condition. In this paper we provide a method for obtaining accurate rigorous computer-assisted bounds for the Stokes constant. We apply it to two concrete unfoldings of the Hopf-zero singularity, obtaining a computer-assisted proof that the constant is nonzero.
引用
收藏
相关论文
共 19 条
  • [1] Breakdown of Heteroclinic Connections in the Analytic Hopf-Zero Singularity: Rigorous Computation of the Stokes Constant
    Baldoma, Inmaculada
    Capinski, Maciej J.
    Guardia, Marcel
    Seara, Tere M.
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (02)
  • [2] Breakdown of Heteroclinic Orbits for Some Analytic Unfoldings of the Hopf-Zero Singularity
    I. Baldoma
    T.M. Seara
    Journal of Nonlinear Science, 2006, 16 : 543 - 582
  • [3] Breakdown of heteroclinic orbits for some analytic unfoldings of the Hopf-zero singularity
    Baldoma, I.
    Seara, T. M.
    JOURNAL OF NONLINEAR SCIENCE, 2006, 16 (06) : 543 - 582
  • [4] Exponentially Small Heteroclinic Breakdown in the Generic Hopf-Zero Singularity
    I. Baldomá
    O. Castejón
    T. M. Seara
    Journal of Dynamics and Differential Equations, 2013, 25 : 335 - 392
  • [5] Exponentially Small Heteroclinic Breakdown in the Generic Hopf-Zero Singularity
    Baldoma, I.
    Castejon, O.
    Seara, T. M.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2013, 25 (02) : 335 - 392
  • [6] Breakdown of a 2D Heteroclinic Connection in the Hopf-Zero Singularity (I)
    I. Baldomá
    O. Castejón
    T. M. Seara
    Journal of Nonlinear Science, 2018, 28 : 1551 - 1627
  • [7] Breakdown of a 2D Heteroclinic Connection in the Hopf-Zero Singularity (I)
    Baldoma, I
    Castejon, O.
    Seara, T. M.
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (05) : 1551 - 1627
  • [8] Breakdown of a 2D Heteroclinic Connection in the Hopf-Zero Singularity (II): The Generic Case
    Baldoma, I.
    Castejon, O.
    Seara, T. M.
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (04) : 1489 - 1549
  • [9] Breakdown of a 2D Heteroclinic Connection in the Hopf-Zero Singularity (II): The Generic Case
    I. Baldomá
    O. Castejón
    T. M. Seara
    Journal of Nonlinear Science, 2018, 28 : 1489 - 1549
  • [10] The inner equation for generic analytic unfoldings of the Hopf-zero singularity
    Baldoma, I.
    Seara, T. M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 10 (2-3): : 323 - 347