A review of downscaling methods of satellite-based precipitation estimates

被引:0
|
作者
Arman Abdollahipour
Hassan Ahmadi
Babak Aminnejad
机构
[1] Islamic Azad University,Department of Civil Engineering, Roudehen Branch
来源
Earth Science Informatics | 2022年 / 15卷
关键词
Remote sensing; Satellite-based precipitation; Downscaling;
D O I
暂无
中图分类号
学科分类号
摘要
Satellite remote sensing is the main tool for estimating precipitation over areas with sparse rain gauge networks. Accurate gridded precipitation data at high temporal and spatial scales are needed for various studies such as hydrology, climatology, and meteorology. Meanwhile, downscaling of satellite precipitation products is necessary to attain such data because their spatial resolutions are too coarse for use in local region and basin scales or for parameterizing meteorological and hydrological models at a local scale. In recent years, plenty of attempts have been made to improve the resolutions of satellite-based precipitation estimates, and many algorithms have been proposed for this purpose. A review study of existing methods can help improve and develop future precipitation downscaling algorithms. Therefore, in this paper, the existing downscaling methods are reviewed, categorized, and summarized. Also, the performance of these methods in the studied regions is compared, and their advantages and limitations are highlighted. Finally, we concluded by stating the necessary considerations for future studies.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条
  • [1] A review of downscaling methods of satellite-based precipitation estimates
    Abdollahipour, Arman
    Ahmadi, Hassan
    Aminnejad, Babak
    EARTH SCIENCE INFORMATICS, 2022, 15 (01) : 1 - 20
  • [2] STUDY ON THE SATELLITE-BASED PRECIPITATION DOWNSCALING ALGORITHM IN TIANSHAN MOUNTAIN
    He, Qisheng
    Yang, Tao
    Liu, Baozhu
    Zhou, Si
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 605 - 608
  • [3] Comparison and assessment of spatial downscaling methods for enhancing the accuracy of satellite-based precipitation over Lake Urmia Basin
    Ghorbanpour, Ali Karbalaye
    Hessels, Tim
    Moghim, Sanaz
    Afshar, Abbas
    JOURNAL OF HYDROLOGY, 2021, 596
  • [4] Downscaling Daily Satellite-Based Precipitation Estimates Using MODIS Cloud Optical and Microphysical Properties in Machine-Learning Models
    Medrano, Sergio Callau
    Satge, Frederic
    Molina-Carpio, Jorge
    Zola, Ramiro Pillco
    Bonnet, Marie-Paule
    ATMOSPHERE, 2023, 14 (09)
  • [5] COMPARISON OF REGRESSION MODELS FOR SPATIAL DOWNSCALING OF COARSE SCALE SATELLITE-BASED PRECIPITATION PRODUCTS
    Kim, Yeseul
    Park, No-Wook
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4634 - 4637
  • [6] Downscaling Satellite-Based Estimates of Ocean Bottom Pressure for Tracking Deep Ocean Mass Transport
    Delman, Andrew
    Landerer, Felix
    REMOTE SENSING, 2022, 14 (07)
  • [7] A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-Based Precipitation over North China
    Jing, Wenlong
    Yang, Yaping
    Yue, Xiafang
    Zhao, Xiaodan
    REMOTE SENSING, 2016, 8 (10)
  • [8] Spatial Downscaling of Satellite-Based Precipitation and Its Impact on Discharge Simulations in the Magdalena River Basin in Colombia
    Lopez, Patricia Lopez
    Immerzeel, Walter W.
    Sandoval, Erasmo A. Rodriguez
    Sterk, Geert
    Schellekens, Jaap
    FRONTIERS IN EARTH SCIENCE, 2018, 6
  • [9] A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics
    Xu, Shiguang
    Wu, Chaoyang
    Wang, Li
    Gonsamo, Alemu
    Shen, Yan
    Niu, Zheng
    REMOTE SENSING OF ENVIRONMENT, 2015, 162 : 119 - 140
  • [10] Evaluation of satellite-based evapotranspiration estimates in China
    Huang, Lei
    Li, Zhe
    Tang, Qiuhong
    Zhang, Xuejun
    Liu, Xingcai
    Cui, Huijuan
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11