The automorphic conjugacy problem for subgroups of fundamental groups of compact surfaces

被引:0
作者
Bogopol'skii O.V. [1 ,2 ]
机构
[1] Department of Physical Chemistry and Technology of Polymers, Silesian Technical University, 44-100 Gliwice
[2] Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama, 930-0194
关键词
Mathematical Logic; Fundamental Group; Compact Surface; Conjugacy Problem; Connected Surface;
D O I
10.1023/A:1002850105251
中图分类号
学科分类号
摘要
Let Σ be a compact connected surface with basepoint x and H 1 and H2 be two finitely generated subgroups of π1(Σ, x) on finite sets of generators. It is proved that there exists an algorithm which decides whether there is an automorphism α ∈ Aut(π1 (Σ, x)) for which α(H1) = H2, and if so, it finds such. © 2001 Plenum Publishing Corporation.
引用
收藏
页码:17 / 33
页数:16
相关论文
共 13 条
  • [1] Whitehead J.H.C., On equivalent sets of elements in free groups, Ann. Math., 37, pp. 782-800, (1936)
  • [2] Gersten S.M., On Whitehead's algorithm, Bull. Am. Math. Soc., 1, 2, pp. 281-284, (1984)
  • [3] Collins D.J., Zieschang H., Rescuing the Whitehead method for free products, I: Peak reduction, Math. Z., 185, 4, pp. 487-504, (1984)
  • [4] Collins D.J., Zieschang H., Rescuing the Whitehead method for free products, II: The algorithm, Math. Z., 186, 3, pp. 335-361, (1984)
  • [5] Levitt G., Vogtmann K., A Whitehead Algorithm for Surface Groups, (1997)
  • [6] Zieschang H., Vogt E., Coldeway H.-D., Surfaces and Planar Discontinuous Groups, Lect. Notes Math., 835, (1980)
  • [7] McCool J., Some finitely presented subgroups of the automorphism group of a free group, J. Alg., 35, 1-3, pp. 205-213, (1975)
  • [8] Birman J.S., Braids, Links, and Mapping Class Groups, (1974)
  • [9] Nielsen J., Untersuchungen zur topologie der geschlossenen zweiseitigen flächen, Acta Math., 50, pp. 189-358, (1927)
  • [10] Spanier E.H., Algebraic Topology, (1966)