Dold–Kan Correspondence, Revisited

被引:0
|
作者
Volodymyr Lyubashenko
机构
[1] Institute of Mathematics NASU,
来源
Applied Categorical Structures | 2022年 / 30卷
关键词
Idempotent; Simplicial object; Chain complex; Dold–Kan correspondence; 18G31; 18N50;
D O I
暂无
中图分类号
学科分类号
摘要
We describe Dold–Kan correspondence for an idempotent complete additive category A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {A}}}$$\end{document}. Our approach is based on a family of idempotents in ZΔ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}\Delta $$\end{document}. We represent the obtained normalised complex equivalence of the category of simplicial objects in A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {A}}}$$\end{document} and the category of non-negatively graded chain complexes in A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {A}}}$$\end{document}, N:sA→Ch⩾0(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N:s{{\mathscr {A}}}\rightarrow \text {Ch}_{\geqslant 0}({{\mathscr {A}}})$$\end{document}, as a coend. Explicit formulae for the right adjoint equivalence K:Ch⩾0(A)→sA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K:\text {Ch}_{\geqslant 0}({{\mathscr {A}}})\rightarrow s{{\mathscr {A}}}$$\end{document} are obtained. It is shown that the functors N, K preserve the homotopy relation. Similar results are obtained for cosimplicial objects.
引用
收藏
页码:543 / 567
页数:24
相关论文
共 4 条
  • [1] Dold-Kan Correspondence, Revisited
    Lyubashenko, Volodymyr
    APPLIED CATEGORICAL STRUCTURES, 2022, 30 (03) : 543 - 567
  • [2] A DOLD-KAN THEOREM FOR SIMPLICIAL LIE ALGEBRAS
    Carrasco, P.
    Cegarra, A. M.
    THEORY AND APPLICATIONS OF CATEGORIES, 2017, 32 : 1165 - 1212
  • [3] Homotopy equivalence of normalized and unnormalized complexes, revisited
    Lyubashenko, V
    Matsui, A.
    ALGEBRA AND DISCRETE MATHEMATICS, 2021, 32 (02): : 253 - 266
  • [4] Graphs Attached to Rings Revisited
    Maimani, H. R.
    Pournaki, M. R.
    Tehranian, A.
    Yassemi, S.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2011, 36 (06): : 997 - 1011