On combinatorial Gauss-Bonnet Theorem for general Euclidean simplicial complexes

被引:0
|
作者
Stephan Klaus
机构
[1] Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO),Scientific Administrator of the MFO and Adjunct Professor at Mainz University
来源
关键词
Curvature; dihedral angle; Euclidean simplex; triangulation; Euler characteristic; Euler manifold; combinatorial manifold; pseudo manifold; 51M20; 52B70; 53A55; 53C20; 53C23; 55U05; 55U10; 57Q05; 57Q15; 57R05; 57R20;
D O I
暂无
中图分类号
学科分类号
摘要
For a finitely triangulated closed surface M2, let αx be the sum of angles at a vertex x. By the well-known combinatorial version of the 2- dimensional Gauss-Bonnet Theorem, it holds Σx(2π - αx) = 2πχ(M2), where χ denotes the Euler characteristic of M2, αx denotes the sum of angles at the vertex x, and the sum is over all vertices of the triangulation. We give here an elementary proof of a straightforward higher-dimensional generalization to Euclidean simplicial complexes K without assuming any combinatorial manifold condition. First, we recall some facts on simplicial complexes, the Euler characteristics and its local version at a vertex. Then we define δ(τ) as the normed dihedral angle defect around a simplex τ. Our main result is Στ (-1)dim(τ)δ(τ) = χ(K), where the sum is over all simplices τ of the triangulation. Then we give a definition of curvature κ(x) at a vertex and we prove the vertex-version Σx∈K0 κ(x) = χ(K) of this result. It also possible to prove Morse-type inequalities. Moreover, we can apply this result to combinatorial (n + 1)-manifolds W with boundary B, where we prove that the difference of Euler characteristics is given by the sum of curvatures over the interior of W plus a contribution from the normal curvature along the boundary B: χ(W)−12χ(B)=∑τ∈W−B(−1)dim(τ)+∑τ∈B(−1)dim(τ)ρ(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi \left( W \right) - \frac{1}{2}\chi \left( B \right) = \sum {_{\tau \in W - B}} {\left( { - 1} \right)^{\dim \left( \tau \right)}} + \sum {_{\tau \in B}} {\left( { - 1} \right)^{\dim \left( \tau \right)}}\rho \left( \tau \right)$$\end{document}.
引用
收藏
页码:1345 / 1362
页数:17
相关论文
共 50 条