Examination of blood samples using deep learning and mobile microscopy

被引:0
|
作者
Juliane Pfeil
Alina Nechyporenko
Marcus Frohme
Frank T. Hufert
Katja Schulze
机构
[1] Technical University of Applied Sciences,Molecular Biology and Functional Genomics
[2] Kharkiv National University of Radio Electronics,Institute for Microbiology and Virology
[3] Brandenburg Medical School Theodor Fontane,undefined
[4] Oculyze GmbH,undefined
[5] Mobile Microscopy and Computer Vision,undefined
来源
BMC Bioinformatics | / 23卷
关键词
Mobile microscopy; Blood cell detection; Machine learning; Deep learning; Instance segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Examination of blood samples using deep learning and mobile microscopy
    Pfeil, Juliane
    Nechyporenko, Alina
    Frohme, Marcus
    Hufert, Frank T.
    Schulze, Katja
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [2] DEEP LEARNING FRAMEWORK FOR MOBILE MICROSCOPY
    Kornilova, Anatasiia
    Salnikov, Mikhail
    Novitskaya, Olga
    Begicheva, Maria
    Sevriugov, Egor
    Shcherbakov, Kirill
    Pronina, Valeriya
    Dylov, Dmitry, V
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 324 - 328
  • [3] Label-Free Bioaerosol Sensing Using Mobile Microscopy and Deep Learning
    Wu, Yichen
    Calis, Ayfer
    Luo, Yi
    Chen, Cheng
    Lutton, Maxwell
    Rivenson, Yair
    Lin, Xing
    Koydemir, Hatice Ceylan
    Zhang, Yibo
    Wang, Hongda
    Gorocs, Zoltan
    Ozcan, Aydogan
    ACS PHOTONICS, 2018, 5 (11): : 4617 - 4627
  • [4] Data for assessing red blood cell deformability from microscopy images using deep learning
    Lamoureux, Erik S.
    Islamzada, Emel
    Wiens, Matthew V. J.
    Matthews, Kerryn
    Duffy, Simon P.
    Ma, Hongshen
    DATA IN BRIEF, 2023, 47
  • [5] Deep Learning Enhanced Mobile-Phone Microscopy
    Rivenson, Yair
    Koydemir, Hatice Ceylan
    Wang, Hongda
    Wei, Zhensong
    Ren, Zhengshuang
    Gunaydin, Harun
    Zhang, Yibo
    Gorocs, Zoltan
    Liang, Kyle
    Tseng, Derek
    Ozcan, Aydogan
    ACS PHOTONICS, 2018, 5 (06): : 2354 - 2364
  • [6] Anemia detection and classification from blood samples using data analysis and deep learning
    Bahadure, Nilesh Bhaskarrao
    Khomane, Ramdas
    Nittala, Aditya
    AUTOMATIKA, 2024, 65 (03) : 1163 - 1176
  • [7] Advancing electron microscopy using deep learning
    Chen, K.
    Barnard, A. S.
    JOURNAL OF PHYSICS-MATERIALS, 2024, 7 (02):
  • [8] Automated Adequacy Assessment of Cervical Cytology Samples Using Deep Learning
    Mosiichuk, Vladyslav
    Viana, Paula
    Oliveira, Tiago
    Rosado, Luis
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022), 2022, 13256 : 156 - 170
  • [9] DLDiagnosis: A mobile and web application for diseases classification using Deep Learning
    Mustapha, Aatila
    Abdellah, Kadem
    Mohamed, Lachgar
    Khalid, Lamhaddab
    Hamid, Hrimech
    Ali, Kartit
    SOFTWAREX, 2023, 23
  • [10] Applications of deep learning in electron microscopy
    Treder, Kevin P.
    Huang, Chen
    Kim, Judy S.
    Kirkland, Angus, I
    MICROSCOPY, 2022, 71 : i100 - i115