Reverses of Young and Heinz inequalities for positive linear operators

被引:0
|
作者
S Malekinejad
S Talebi
AG Ghazanfari
机构
[1] Payame Noor University,Department of Mathematics
[2] Payame Noor University,Department of Mathematics
[3] Lorestan University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2016卷
关键词
Hilbert Space; Positive Operator; Operator Monotone; Operator Version; Matrix Version;
D O I
暂无
中图分类号
学科分类号
摘要
Let A, B be invertible positive operators on a Hilbert space H. We present some improved reverses of Young type inequalities, in particular, (1−ν)2ν(A∇B)+(1−ν)2(1−ν)H2ν(A,B)≥2(1−ν)(A♯B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (1-\nu)^{2\nu}(A\nabla B)+(1-\nu)^{2(1-\nu)}H_{2\nu}(A,B) \geq2(1-\nu ) (A\sharp B) $$\end{document} and (1−ν)2νH2ν(A,B)+(1−ν)2(1−ν)(A∇B)≥2(1−ν)(A♯B),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (1-\nu)^{2\nu}H_{2\nu}(A,B)+(1-\nu)^{2(1-\nu)}(A\nabla B) \geq2(1-\nu ) (A\sharp B), $$\end{document} where 0≤υ≤12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\leq\upsilon\leq\frac{1}{2}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Reverses and variations of the Young inequality
    Cao, Haisong
    Wu, Junliang
    SCIENCEASIA, 2016, 42 (01): : 61 - 65
  • [42] Subadditivity Inequalities for Compact Operators
    Bourin, Jean-Christophe
    Harada, Tetsuo
    Lee, Eun-Young
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (01): : 25 - 36
  • [43] Inequalities for sums and products of operators
    Hirzallah, O
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 407 : 32 - 42
  • [44] ON SOME INEQUALITIES FOR τ-MEASURABLE OPERATORS
    Davarpanah, S. M.
    Omidvar, M. E.
    Moradi, H. R.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (01): : 52 - 59
  • [45] ON REFINED YOUNG INEQUALITIES AND REVERSE INEQUALITIES
    Furuichi, Shigeru
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (01): : 21 - 31
  • [46] SPLITTING OF OPERATORS FOR FRAME INEQUALITIES
    Li, Dongwei
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (02): : 421 - 430
  • [47] Advancement of Numerical Radius Inequalities of Operators and Product of Operators
    Nayak, Raj Kumar
    IRANIAN JOURNAL OF SCIENCE, 2024, 48 (03) : 649 - 657
  • [48] Some norm inequalities for operators
    Kittaneh, F
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1999, 42 (01): : 87 - 96
  • [49] Some Inequalities of the Grüss Type for the Numerical Radius of Bounded Linear Operators in Hilbert Spaces
    S. S. Dragomir
    Journal of Inequalities and Applications, 2008
  • [50] Sharp constant in a Jackson-type inequality for approximation by positive linear operators
    Vinogradov O.L.
    Journal of Mathematical Sciences, 2001, 107 (4) : 3987 - 4001