Reverses of Young and Heinz inequalities for positive linear operators

被引:0
|
作者
S Malekinejad
S Talebi
AG Ghazanfari
机构
[1] Payame Noor University,Department of Mathematics
[2] Payame Noor University,Department of Mathematics
[3] Lorestan University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2016卷
关键词
Hilbert Space; Positive Operator; Operator Monotone; Operator Version; Matrix Version;
D O I
暂无
中图分类号
学科分类号
摘要
Let A, B be invertible positive operators on a Hilbert space H. We present some improved reverses of Young type inequalities, in particular, (1−ν)2ν(A∇B)+(1−ν)2(1−ν)H2ν(A,B)≥2(1−ν)(A♯B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (1-\nu)^{2\nu}(A\nabla B)+(1-\nu)^{2(1-\nu)}H_{2\nu}(A,B) \geq2(1-\nu ) (A\sharp B) $$\end{document} and (1−ν)2νH2ν(A,B)+(1−ν)2(1−ν)(A∇B)≥2(1−ν)(A♯B),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (1-\nu)^{2\nu}H_{2\nu}(A,B)+(1-\nu)^{2(1-\nu)}(A\nabla B) \geq2(1-\nu ) (A\sharp B), $$\end{document} where 0≤υ≤12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\leq\upsilon\leq\frac{1}{2}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Norm Inequalities for Sums of Positive Operators. II
    Fuad Kittaneh
    Positivity, 2006, 10 : 251 - 260
  • [22] Refinements of the Heinz operator inequalities
    Liang, Jin
    Shi, Guanghua
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (07) : 1337 - 1344
  • [23] REVERSES OF ANDO'S INEQUALITY FOR POSITIVE LINEAR MAPS
    Seo, Yuki
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (04): : 905 - 910
  • [24] Some means inequalities for positive operators in Hilbert spaces
    Liang, Jin
    Shi, Guanghua
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [25] REVERSE YOUNG-TYPE INEQUALITIES FOR MATRICES AND OPERATORS
    Bakherad, Mojtaba
    Krnic, Mario
    Moslehian, Mohammad Sal
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (04) : 1089 - 1105
  • [26] Positive linear operators generated by analytic functions
    Sofiya Ostrovska
    Proceedings Mathematical Sciences, 2007, 117 : 485 - 493
  • [27] Approximation theorems for certain positive linear operators
    Mahmudov, N. I.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (07) : 812 - 817
  • [28] Positive linear operators generated by analytic functions
    Ostrovska, Sofiya
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2007, 117 (04): : 485 - 493
  • [29] NORM INEQUALITIES EQUIVALENT TO HEINZ INEQUALITY
    FUJII, J
    FUJII, M
    FURUTA, T
    NAKAMOTO, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) : 827 - 830
  • [30] OPERATOR INEQUALITIES INVOLVING THE ARITHMETIC, GEOMETRIC, HEINZ AND HERON MEANS
    Zhao, Jianguo
    Wu, Junliang
    Cao, Haisong
    Liao, Wenshi
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (04): : 747 - 756