Reverses of Young and Heinz inequalities for positive linear operators

被引:0
|
作者
S Malekinejad
S Talebi
AG Ghazanfari
机构
[1] Payame Noor University,Department of Mathematics
[2] Payame Noor University,Department of Mathematics
[3] Lorestan University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2016卷
关键词
Hilbert Space; Positive Operator; Operator Monotone; Operator Version; Matrix Version;
D O I
暂无
中图分类号
学科分类号
摘要
Let A, B be invertible positive operators on a Hilbert space H. We present some improved reverses of Young type inequalities, in particular, (1−ν)2ν(A∇B)+(1−ν)2(1−ν)H2ν(A,B)≥2(1−ν)(A♯B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (1-\nu)^{2\nu}(A\nabla B)+(1-\nu)^{2(1-\nu)}H_{2\nu}(A,B) \geq2(1-\nu ) (A\sharp B) $$\end{document} and (1−ν)2νH2ν(A,B)+(1−ν)2(1−ν)(A∇B)≥2(1−ν)(A♯B),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (1-\nu)^{2\nu}H_{2\nu}(A,B)+(1-\nu)^{2(1-\nu)}(A\nabla B) \geq2(1-\nu ) (A\sharp B), $$\end{document} where 0≤υ≤12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\leq\upsilon\leq\frac{1}{2}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] IMPROVED YOUNG AND HEINZ INEQUALITIES WITH THE KANTOROVICH CONSTANT
    Liao, Wenshi
    Wu, Junliang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 559 - 570
  • [3] Improved reverses Young type inequalities
    Wu, Xuesha
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 899 - 903
  • [4] Weighted inequalities for positive operators
    Sinnamon, G
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (03): : 419 - 440
  • [5] Norm Inequalities for Positive Operators
    Rajendra Bhatia
    Fuad Kittaneh
    Letters in Mathematical Physics, 1998, 43 : 225 - 231
  • [6] Inequalities for commutators of positive operators
    Kittaneh, Fuad
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (01) : 132 - 143
  • [7] Convexity inequalities for positive operators
    Haase, Markus
    POSITIVITY, 2007, 11 (01) : 57 - 68
  • [8] Norm inequalities for positive operators
    Bhatia, R
    Kittaneh, F
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 43 (03) : 225 - 231
  • [9] Convexity Inequalities for Positive Operators
    Markus Haase
    Positivity, 2007, 11 : 57 - 68
  • [10] REFINEMENTS AND REVERSES OF MEANS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Hirzallah, Omar
    Kittaneh, Fuad
    Krnic, Mario
    Lovricevic, Neda
    Pecaric, Josip
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (02): : 15 - 29