Implementation of a new memristor-based multiscroll hyperchaotic system

被引:0
|
作者
CHUNHUA WANG
HU XIA
LING ZHOU
机构
[1] Hunan University,College of Computer Science and Electronic Engineering
来源
Pramana | 2017年 / 88卷
关键词
Memristor; hyperchaos; three-scroll chaotic attractor; circuit implementation.; 05.40.Jc; 05.45.Pq;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new type of flux-controlled memristor model with fifth-order flux polynomials is presented. An equivalent circuit which realizes the action of higher-order flux-controlled memristor is also proposed. We use the memristor model to establish a memristor-based four-dimensional (4D) chaotic system, which can generate three-scroll chaotic attractor. By adjusting the system parameters, the proposed chaotic system performs hyperchaos. Phase portraits, Lyapunov exponents, bifurcation diagram, equilibrium points and stability analysis have been used to research the basic dynamics of this chaotic system. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.
引用
收藏
相关论文
共 50 条
  • [21] Design and implementation of an efficient memristor-based chaotic circuit
    Kumari U.
    Yadav R.
    International Journal of Information Technology, 2023, 15 (8) : 4449 - 4458
  • [22] BSB Training Scheme Implementation on Memristor-Based Circuit
    Hu, Miao
    Li, Hai
    Chen, Yiran
    Wu, Qing
    Rose, Garrett S.
    2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR SECURITY AND DEFENSE APPLICATIONS (CISDA), 2013, : 80 - 87
  • [23] Novel Nonlinear Function Shift Method for Generating Multiscroll Attractors Using Memristor-Based Control Circuit
    Hong, Qinghui
    Wu, Qiujie
    Wang, Xiaoping
    Zeng, Zhigang
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2019, 27 (05) : 1174 - 1185
  • [24] A new hyperchaotic system and its circuit implementation
    Niu Yujun
    Wang Xingyuan
    Wang Mingjun
    Zhang Huaguang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) : 3518 - 3524
  • [25] Nonparametric bifurcation mechanism in 2-D hyperchaotic discrete memristor-based map
    Yue Deng
    Yuxia Li
    Nonlinear Dynamics, 2021, 104 : 4601 - 4614
  • [26] On the simplest fractional-order memristor-based chaotic system
    Cafagna, Donato
    Grassi, Giuseppe
    NONLINEAR DYNAMICS, 2012, 70 (02) : 1185 - 1197
  • [27] Nonparametric bifurcation mechanism in 2-D hyperchaotic discrete memristor-based map
    Deng, Yue
    Li, Yuxia
    NONLINEAR DYNAMICS, 2021, 104 (04) : 4601 - 4614
  • [28] Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator
    S. Sabarathinam
    Christos K. Volos
    K. Thamilmaran
    Nonlinear Dynamics, 2017, 87 : 37 - 49
  • [29] Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator
    Sabarathinam, S.
    Volos, Christos K.
    Thamilmaran, K.
    NONLINEAR DYNAMICS, 2017, 87 (01) : 37 - 49
  • [30] An memristor-based synapse implementation using BCM learning rule
    Huang, Yongchuang
    Liu, Junxiu
    Harkin, Jim
    McDaid, Liam
    Luo, Yuling
    NEUROCOMPUTING, 2021, 423 : 336 - 342