A systematic experimental study on the evaporation rate of supercooled water droplets at subzero temperatures and varying relative humidity

被引:0
作者
S. Ruberto
J. Reutzsch
N. Roth
B. Weigand
机构
[1] University of Stuttgart,Institute of Aerospace Thermodynamics
来源
Experiments in Fluids | 2017年 / 58卷
关键词
Direct Numerical Simulation; Evaporation Rate; Droplet Diameter; Sherwood Number; Subzero Temperature;
D O I
暂无
中图分类号
学科分类号
摘要
Supercooled water droplets (SWD) are present in clouds at high altitude and subjected to very low temperatures and high relative humidity. These droplets exist in a metastable state. The understanding of the evaporation of SWD at these extreme conditions is of high interest to understand rain, snow, and hail generating mechanisms in clouds. This paper focuses on the experimental results of the measurements of the evaporation rates β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} of supercooled water droplets. For this purpose, single SWDs are trapped by means of optical levitation. During the evaporation process, the elastically scattered light in the forward regime is recorded and evaluated. Experiments have been performed for different relative humidities ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} at three constant ambient temperatures, namely, T∞=268.15;263.15;253.15K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_\infty }=268.15;~263.15;~253.15~{\text{K}}$$\end{document} (t∞=-5;-10;-20∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t_\infty } = -5;\,-10;\,-20~^{\circ}{\text{C}}$$\end{document}). The experimental data agrees well with direct numerical simulations (DNS) carried out with the in-house code Free Surface 3D (FS3D) and shows that the use of a simplified model is permissible for these ambient conditions.
引用
收藏
相关论文
共 25 条
[1]  
Ashkin A(2000)History of optical trapping and manipulation of small-neutral particle, atoms, and molecules IEEE J Sel Top Quant 6 841-856
[2]  
Eisenschmidt K(2016)Direct numerical simulations for multiphase flows: an overview of the multiphase code FS3D Appl Math Comput 272 508-517
[3]  
Glantschnig WJ(1981)Light scattering from water droplets in the geometrical optics approximation Appl Optics 20 2499-2509
[4]  
Chen SH(1998)Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density J Phys Chem Ref Data 27 761-774
[5]  
Harvey AH(2003)Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet Int J Heat Mass Tran 46 1199-1213
[6]  
Gallagher JS(1987)Volume of fluid (VOF) method for dynamics of free boundaries J Comput Phys 39 201-225
[7]  
Levelt Sengers JMH(1975)Droplet evaporation: Effects of transient and variable properties Int J Heat Mass Tran 18 1003-1008
[8]  
Hindmarsh J(1993)Theory of morphology-dependent resonances: shape resonances and width formulas J Opt Soc Am A 10 343-352
[9]  
Russell A(1998)Reconstructing volume tracking J Comput Phys 141 112-152
[10]  
Chen X(2008)Direct numerical simulation of evaporating droplets J Comput Phys 227 5215-5237