Transport and Phonon Damping in 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document}He

被引:0
|
作者
K. Beauvois
H. Godfrin
E. Krotscheck
R. E. Zillich
机构
[1] Institut Laue-Langevin,Department of Physics
[2] Univ. Grenoble Alpes,Institut für Theoretische Physik
[3] CNRS,undefined
[4] Grenoble INP,undefined
[5] Institut Néel,undefined
[6] University at Buffalo SUNY,undefined
[7] Johannes Kepler Universität,undefined
关键词
He-II; Neutron scattering; Phonon dispersion; Theory;
D O I
10.1007/s10909-019-02219-1
中图分类号
学科分类号
摘要
The dynamic structure function S(k,ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S(k,\omega )$$\end{document} informs about the dispersion and damping of excitations. We have recently (Beauvois et al. in Phys Rev B 97:184520, 2018) compared experimental results for S(k,ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S(k,\omega )$$\end{document} from high-precision neutron scattering experiments and theoretical results using the “dynamic many-body theory” (DMBT), showing excellent agreement over the whole experimentally accessible pressure regime. This paper focuses on the specific aspect of the propagation of low-energy phonons. We report calculations of the phonon mean-free path and phonon lifetime in liquid 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document}He as a function of wavelength and pressure. Historically, the question was of interest for experiments of quantum evaporation. More recently, there is interest in the potential use of 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document}He as a detector for low-energy dark matter (Schulz and Zurek in Phys Rev Lett 117:121302/1, 2016). While the mean-free path of long wavelength phonons is large, phonons of intermediate energy can have a short mean-free path of the order of μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\upmu }\mathrm{m}$$\end{document}. Comparison of different levels of theory indicates that reliable predictions of the phonon mean-free path can be made only by using the most advanced many-body method available, namely DMBT.
引用
收藏
页码:113 / 129
页数:16
相关论文
共 46 条