Higher order selfdual toric varieties

被引:0
|
作者
Alicia Dickenstein
Ragni Piene
机构
[1] Universidad de Buenos Aires,Department of Mathematics, FCEN
[2] IMAS (UBA-CONICET),Department of Mathematics
[3] Ciudad Universitaria - Pab. I,undefined
[4] University of Oslo,undefined
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2017年 / 196卷
关键词
Toric Varieties; Cayley-Bacharach Theorem; Higher Order Duality; Torus Embedding; Interior Lattice Points;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of higher order dual varieties of a projective variety, introduced in Piene [Singularities, part 2, (Arcata, Calif., 1981), Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, 1983], is a natural generalization of the classical notion of projective duality. In this paper, we present geometric and combinatorial characterizations of those equivariant projective toric embeddings that satisfy higher order selfduality. We also give several examples and general constructions. In particular, we highlight the relation with Cayley–Bacharach questions and with Cayley configurations.
引用
收藏
页码:1759 / 1777
页数:18
相关论文
共 50 条
  • [21] HYPERBOLA METHOD ON TORIC VARIETIES
    Pieropan, Marta
    Schindler, Damaris
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2024, 11 : 107 - 157
  • [22] An interpolation theorem in toric varieties
    Weimann, Martin
    ANNALES DE L INSTITUT FOURIER, 2008, 58 (04) : 1371 - 1381
  • [23] Degeneration of Schubert varieties of SLn/B to toric varieties
    Dehy, R
    Yu, RWT
    ANNALES DE L INSTITUT FOURIER, 2001, 51 (06) : 1525 - +
  • [24] THE K-THEORY OF TORIC VARIETIES
    Cortinas, G.
    Haesemeyer, C.
    Walker, Mark E.
    Weibel, C.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (06) : 3325 - 3341
  • [25] Toric varieties with ample tangent bundle
    Wu, Kuang-Yu
    ALGEBRAIC COMBINATORICS, 2024, 7 (01): : 1 - 7
  • [26] DIVISORIAL COHOMOLOGY VANISHING ON TORIC VARIETIES
    Perling, Markus
    DOCUMENTA MATHEMATICA, 2011, 16 : 209 - 251
  • [27] The Gerstenhaber productof affine toric varieties
    Filip, Matej
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (03) : 1146 - 1162
  • [28] Asymptotic weights of syzygies of toric varieties
    Zhou, Xin
    JOURNAL OF ALGEBRA, 2017, 480 : 144 - 167
  • [29] On derived categories of arithmetic toric varieties
    Ballard, Matthew
    Duncan, Alexander
    McFaddin, Patrick
    ANNALS OF K-THEORY, 2019, 4 (02) : 211 - 242
  • [30] On reduced arc spaces of toric varieties
    Dumanski, Ilya
    Feigin, Evgeny
    Makedonskyi, Ievgen
    Makhlin, Igor
    ALGEBRA & NUMBER THEORY, 2025, 19 (02)