Higher order selfdual toric varieties

被引:0
|
作者
Alicia Dickenstein
Ragni Piene
机构
[1] Universidad de Buenos Aires,Department of Mathematics, FCEN
[2] IMAS (UBA-CONICET),Department of Mathematics
[3] Ciudad Universitaria - Pab. I,undefined
[4] University of Oslo,undefined
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2017年 / 196卷
关键词
Toric Varieties; Cayley-Bacharach Theorem; Higher Order Duality; Torus Embedding; Interior Lattice Points;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of higher order dual varieties of a projective variety, introduced in Piene [Singularities, part 2, (Arcata, Calif., 1981), Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, 1983], is a natural generalization of the classical notion of projective duality. In this paper, we present geometric and combinatorial characterizations of those equivariant projective toric embeddings that satisfy higher order selfduality. We also give several examples and general constructions. In particular, we highlight the relation with Cayley–Bacharach questions and with Cayley configurations.
引用
收藏
页码:1759 / 1777
页数:18
相关论文
共 50 条
  • [1] Degenerations of toric ideals and toric varieties
    Zhu, Chun-Gang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) : 613 - 618
  • [2] Residues in toric varieties
    Cattani, E
    Cox, D
    Dickenstein, A
    COMPOSITIO MATHEMATICA, 1997, 108 (01) : 35 - 76
  • [3] FIBERED TORIC VARIETIES
    Khovanskii, Askold
    Monin, Leonid
    MOSCOW MATHEMATICAL JOURNAL, 2023, 23 (04) : 545 - 558
  • [4] Endomotives of toric varieties
    Jin, Zhaorong
    Marcolli, Matilde
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 77 : 48 - 71
  • [5] Families of toric varieties
    Halic, M
    MATHEMATISCHE NACHRICHTEN, 2003, 261 : 60 - 84
  • [6] Discriminants of toric varieties
    Munoz, Roberto
    Nolla, Alvaro
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (12) : 5109 - 5128
  • [7] Toric Richardson varieties
    Can, Mahir Bilen
    Saha, Pinakinath
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (05) : 1770 - 1790
  • [8] Schubert varieties, toric varieties, and ladder determinantal varieties
    Gonciulea, N
    Lakshmibai, V
    ANNALES DE L INSTITUT FOURIER, 1997, 47 (04) : 1013 - &
  • [9] Weights in the cohomology of toric varieties
    Weber, Andrzej
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (03): : 478 - 492
  • [10] On Fano Schemes of Toric Varieties
    Ilten, Nathan
    Zotine, Alexandre
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01): : 152 - 174