Artificial perturbation for solving the Korteweg-de Vries equation

被引:7
|
作者
Khelil N. [1 ]
Bensalah N. [1 ]
Saidi H. [1 ]
Zerarka A. [1 ]
机构
[1] Laboratory of Physics and Applied Mathematics, University Med Khider, BP 145
来源
关键词
Korteweg-de Vries (KdV) equation; Perturbation; Quintic spline; Taylor series;
D O I
10.1631/jzus.2006.A2079
中图分类号
学科分类号
摘要
A perturbation method is introduced in the context of dynamical system for solving the nonlinear Korteweg-de Vries (KdV) equation. Best efficiency is obtained for few perturbative corrections. It is shown that, the question of convergence of this approach is completely guaranteed here, because a limited number of term included in the series can describe a sufficient exact solution. Comparisons with the solutions of the quintic spline, and finite difference are presented.
引用
收藏
页码:2079 / 2082
页数:3
相关论文
共 50 条
  • [21] ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION
    KENIG, CE
    PONCE, G
    VEGA, L
    DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) : 585 - 610
  • [22] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882
  • [23] Hierarchies of the Korteweg-de Vries Equation Related to Complex Expansion and Perturbation
    Redkina, Tatyana V.
    Zakinyan, Arthur R.
    Zakinyan, Robert G.
    Surneva, Olesya B.
    AXIOMS, 2023, 12 (04)
  • [24] On the solution of the nonlinear Korteweg-de Vries equation by the homotopy perturbation method
    Yildirim, Ahmet
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2009, 25 (12): : 1127 - 1136
  • [25] He's Homotopy Perturbation Method for Solving Korteweg-de Vries Burgers Equation with Initial Condition
    Inc, Mustafa
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (05) : 1224 - 1235
  • [26] Solving unsteady Korteweg-de Vries equation and its two alternatives
    Khan, Kamruzzaman
    Akbar, M. Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) : 2752 - 2760
  • [27] An analytical-numerical method for solving the Korteweg-de Vries equation
    Özer, S
    Kutluay, S
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 164 (03) : 789 - 797
  • [28] Convergence of the Rosenau-Korteweg-de Vries Equation to the Korteweg-de Vries One
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    CONTEMPORARY MATHEMATICS, 2020, 1 (05): : 365 - 392
  • [29] Discrete artificial boundary conditions for the linearized Korteweg-de Vries equation
    Besse, C.
    Ehrhardt, M.
    Lacroix-Violet, I.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (05) : 1455 - 1484
  • [30] Soliton perturbation theory for matrix complex modified Korteweg-de Vries equation
    Zeidabadi, F. Ahmadi
    Hoseini, S. M.
    WAVE MOTION, 2018, 76 : 42 - 50