Artificial perturbation for solving the Korteweg-de Vries equation

被引:7
|
作者
Khelil N. [1 ]
Bensalah N. [1 ]
Saidi H. [1 ]
Zerarka A. [1 ]
机构
[1] Laboratory of Physics and Applied Mathematics, University Med Khider, BP 145
来源
关键词
Korteweg-de Vries (KdV) equation; Perturbation; Quintic spline; Taylor series;
D O I
10.1631/jzus.2006.A2079
中图分类号
学科分类号
摘要
A perturbation method is introduced in the context of dynamical system for solving the nonlinear Korteweg-de Vries (KdV) equation. Best efficiency is obtained for few perturbative corrections. It is shown that, the question of convergence of this approach is completely guaranteed here, because a limited number of term included in the series can describe a sufficient exact solution. Comparisons with the solutions of the quintic spline, and finite difference are presented.
引用
收藏
页码:2079 / 2082
页数:3
相关论文
共 50 条
  • [11] Recurrence in the Korteweg-de Vries equation?
    Herbst, Ben
    Nieddu, Garrett
    Trubatch, A. David
    NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 1 - 12
  • [12] The Korteweg-de Vries equation on the interval
    Hitzazis, Iasonas
    Tsoubelis, Dimitri
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [13] On the stabilization of the Korteweg-de Vries equation
    Komornik, Vilmos
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2010, 28 (02): : 33 - 48
  • [14] THE DISCRETE KORTEWEG-DE VRIES EQUATION
    NIJHOFF, F
    CAPEL, H
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 133 - 158
  • [15] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [16] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [17] THE KORTEWEG-DE VRIES EQUATION AND BEYOND
    FOKAS, AS
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 295 - 305
  • [18] Cosmology and the Korteweg-de Vries equation
    Lidsey, James E.
    PHYSICAL REVIEW D, 2012, 86 (12)
  • [19] GENERALIZATIONS OF THE KORTEWEG-DE VRIES EQUATION
    SAUT, JC
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1979, 58 (01): : 21 - 61
  • [20] The Korteweg-de Vries equation on an interval
    Himonas, A. Alexandrou
    Mantzavinos, Dionyssios
    Yan, Fangchi
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)