Artificial perturbation for solving the Korteweg-de Vries equation

被引:7
作者
Khelil N. [1 ]
Bensalah N. [1 ]
Saidi H. [1 ]
Zerarka A. [1 ]
机构
[1] Laboratory of Physics and Applied Mathematics, University Med Khider, BP 145
来源
Journal of Zhejiang University-SCIENCE A | 2006年 / 7卷 / 12期
关键词
Korteweg-de Vries (KdV) equation; Perturbation; Quintic spline; Taylor series;
D O I
10.1631/jzus.2006.A2079
中图分类号
学科分类号
摘要
A perturbation method is introduced in the context of dynamical system for solving the nonlinear Korteweg-de Vries (KdV) equation. Best efficiency is obtained for few perturbative corrections. It is shown that, the question of convergence of this approach is completely guaranteed here, because a limited number of term included in the series can describe a sufficient exact solution. Comparisons with the solutions of the quintic spline, and finite difference are presented.
引用
收藏
页码:2079 / 2082
页数:3
相关论文
共 13 条
[1]  
Boiti M., Leon J.J.P., Martina L., Pempinelli F., Scattering of localized solitons in the plane, Phys. Lett. A, 132, 8-9, pp. 432-439, (1988)
[2]  
Cherruault Y., Saccomandi G., Some B., New results for convergence of Adomian's method, Math. Comput. Modelling, 16, 2, pp. 85-93, (1992)
[3]  
El-Zoheiry H., Iskandar L., El-Naggar B., The quintic spline for solving the Korteweg-de Vries equation, Mathematics and Computers in Simulation, 37, 6, pp. 539-549, (1994)
[4]  
Fang J.Q., Yao W.G., Adomian's decomposition method for the solution of generalized duffing equations, Proc. Internat. Workshop on Mathematics Mechanization, (1992)
[5]  
Fornberg B., Whitham G.B., A numerical and theoretical study of certain nonlinear wave phenomena, Phil. Trans. Royal Soc. London, 289, pp. 373-404, (1978)
[6]  
Freeman N.C., Johnson R.S., Shallow water waves on shear flows, Journal of Fluid Mechanics, 42, 2, pp. 401-409, (1970)
[7]  
Gardner C.S., Green J.M., Kruskal M.D., Miura R.M., Method for solving the KdV equation, Phys. Rev. Lett., 19, 19, pp. 1095-1097, (1967)
[8]  
Hirota R., Exact solution of KdV equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 18, pp. 1192-1194, (1971)
[9]  
Iskandar L., New numerical solution of the Korteweg-de Vries equation, Appl. Num. Math., 5, 3, pp. 215-221, (1989)
[10]  
Korteweg D.J., de Vries G., On the change of the form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag., 39, pp. 422-443, (1895)