Current progress of self-healing polymers for medical applications in tissue engineering

被引:0
|
作者
María Luisa Del Prado-Audelo
Isaac H. Caballero-Florán
Néstor Mendoza-Muñoz
David Giraldo-Gomez
Javad Sharifi-Rad
Jayanta Kumar Patra
Maykel González-Torres
Benjamín Florán
Hernán Cortes
Gerardo Leyva-Gómez
机构
[1] Universidad Nacional Autónoma de México,Departamento de Farmacia, Facultad de Química
[2] Tecnológico de Monterrey Campus Ciudad de México,Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería
[3] Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional,Departamento de Fisiología, Biofísica and Neurociencias
[4] Universidad de Colima,Facultad de Ciencias Químicas
[5] Universidad Nacional Autónoma de México (UNAM),Departamento de Biología Celular y Tisular, Facultad de Medicina
[6] Universidad Nacional Autónoma de México (UNAM),Unidad de Microscopía, Facultad de Medicina
[7] Shahid Beheshti University of Medical Sciences,Phytochemistry Research Center
[8] Dongguk University-Seoul,Research Institute of Biotechnology and Medical Converged Science
[9] Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra,CONACyT
[10] Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra,Laboratorio de Biotecnología
[11] Universidad del Azuay,Laboratorio de Medicina Genómica, Departamento de Genética
来源
Iranian Polymer Journal | 2022年 / 31卷
关键词
Self-healing polymers; Hydrogels; Biomaterials; Tissue engineering; Cartilage;
D O I
暂无
中图分类号
学科分类号
摘要
The research of self-healable polymers intended for medical use has increased in the last 20 years. These materials can self-repair and recover their functionality after damage; thus, they are of significant interest in diverse academic areas, including the biomedical field. In this regard, numerous synthetic and natural polymers are being used to develop self-healing hydrogels for tissue engineering applications, particularly for the restoration of bones, cartilage, skin, and even the central nervous system. These materials possess distinct advantages; for example, natural polymers are usually biocompatible and biodegradable, whereas synthetic polymers could be more suitable when rigid hydrogels with fast kinetics are required. Moreover, the intrinsic reticular matrix of these self-healing systems allows the load of diverse drugs and their controlled release. Remarkably, polymers may be mixed to obtain hydrogels with enhanced mechanical and biological properties. The elaboration of self-healable hydrogels is carried out through either covalent crosslinking or non-covalent crosslinking; the selection of the method depends on many factors, including the required mechanical properties and desired use. Although some articles have reviewed self-healing hydrogels, papers focused on utilizing these systems in tissue engineering are scarce. In this article, we perform a concise description of fabrication methods of self-healing hydrogels and the employed polymers. Furthermore, we provide numerous examples of hydrogels intended for biomedical purposes and discuss their key functional properties. Our main objective was to point out the most recent progress in utilizing self-healing polymers in tissue engineering.
引用
收藏
页码:7 / 29
页数:22
相关论文
共 50 条
  • [31] Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications
    Devi V. K, Anupama
    Shyam, Rohin
    Palaniappan, Arunkumar
    Jaiswal, Amit Kumar
    Oh, Tae-Hwan
    Nathanael, Arputharaj Joseph
    POLYMERS, 2021, 13 (21)
  • [32] Tissue engineering applications of recombinant human collagen: a review of recent progress
    Cao, Lili
    Zhang, Zhongfeng
    Yuan, Dan
    Yu, Meiping
    Min, Jie
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [33] Self-Healing Polymers Based on Reversible Covalent Bonds
    Kuhl, Natascha
    Bode, Stefan
    Hager, Martin D.
    Schubert, Ulrich S.
    SELF-HEALING MATERIALS, 2016, 273 : 1 - 58
  • [34] BMHP1-Derived Self-Assembling Peptides: Hierarchically Assembled Structures with Self-Healing Propensity and Potential for Tissue Engineering Applications
    Gelain, Fabrizio
    Silva, Diego
    Caprini, Andrea
    Taraballi, Francesca
    Natalello, Antonino
    Villa, Omar
    Nam, Ki Tae
    Zuckermann, Ronald N.
    Doglia, Silvia Maria
    Vescovi, Angelo
    ACS NANO, 2011, 5 (03) : 1845 - 1859
  • [35] Self-healing polymers in rigid and flexible perovskite photovoltaics
    Liang, Fang-Cheng
    Akman, Erdi
    Aftab, Sikandar
    Mohammed, Mustafa K. A.
    Hegazy, H. H.
    Zhang, Xiujuan
    Zhang, Fei
    INFOMAT, 2025, 7 (01)
  • [36] Urethanes as reversible covalent moieties in self-healing polymers
    Kuhl, N.
    Abend, M.
    Geitner, R.
    Vitz, J.
    Zechel, S.
    Schmitt, M.
    Popp, J.
    Schubert, U. S.
    Hager, M. D.
    EUROPEAN POLYMER JOURNAL, 2018, 104 : 45 - 50
  • [37] Acylhydrazones as Reversible Covalent Crosslinkers for Self-Healing Polymers
    Kuhl, Natascha
    Bode, Stefan
    Bose, Ranjita K.
    Vitz, Juergen
    Seifert, Andreas
    Hoeppener, Stephanie
    Garcia, Santiago J.
    Spange, Stefan
    van der Zwaag, Sybrand
    Hager, Martin D.
    Schubert, Ulrich S.
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (22) : 3295 - 3301
  • [38] Applications of Scaffolds in Tissue Engineering: Current Utilization and Future Prospective
    Yadav, Shikha
    Khan, Javed
    Yadav, Agrima
    CURRENT GENE THERAPY, 2024, 24 (02) : 94 - 109
  • [39] Biomimetic Bilayered Scaffolds for Tissue Engineering: From Current Design Strategies to Medical Applications
    Bertsch, Christelle
    Marechal, Helene
    Gribova, Varvara
    Levy, Benjamin
    Debry, Christian
    Lavalle, Philippe
    Fath, Lea
    ADVANCED HEALTHCARE MATERIALS, 2023, 12 (17)
  • [40] Polysaccharide-based Self-healing hydrogels and their diverse Applications
    Afgan, Shere
    Yadav, Paramjeet
    Jaiswal, Sheetal
    Kumar, Rajesh
    TRENDS IN CARBOHYDRATE RESEARCH, 2021, 12 (03) : 29 - 55