Mapping of QTLs for source and sink associated traits under elevated CO2 in rice (Oryza sativa L.)

被引:0
|
作者
Li-Ping Dai
Xue-Li Lu
Wei-Wei Zou
Chang-Jian Wang
Lan Shen
Jiang Hu
Guang-Heng Zhang
De-Yong Ren
Guang Chen
Qiang Zhang
Da-Wei Xue
Guo-Jun Dong
Zhen-Yu Gao
Long-Biao Guo
Li Zhu
Tong-Min Mou
Qian Qian
Da-Li Zeng
机构
[1] State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement,State Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)
[2] China National Rice Research Institute,College of Life and Environmental Sciences
[3] Huazhong Agricultural University,undefined
[4] Hangzhou Normal University,undefined
来源
Plant Growth Regulation | 2020年 / 90卷
关键词
CO; concentration; Chromosome segment substitution line; QTL; Rice;
D O I
暂无
中图分类号
学科分类号
摘要
Rice source- and sink-associated traits are important for grain yield and are sensitive to environmental conditions. The continuing increase of CO2 concentrations in the atmosphere will become a major challenge for rice growth and development in the future due to changes in our climate such as extremes in temperature. To guarantee food safety, novel genetic loci need to be identified for source- and sink-associated traits that are specifically expressed under elevated CO2 conditions. Eighty chromosome segment substitution lines carrying japonica (Nipponbare) chromosome segments in the indica (9311) background were used in this study. QTL analysis was conducted for source- and sink-related traits, including flag leaf length, flag leaf width, flag leaf fresh weight, flag leaf dry weight, primary branch number, secondary branch number, grain number per panicle, panicle weight per plant, chlorophyll a, chlorophyll b, and carotenoid contents, under ambient CO2 concentrations and free-air CO2 enrichment. A total of 49 QTLs for these traits were detected on chromosomes 1, 3, 5, 6, 7, 9, and 12 under the two conditions; the variance explained by these QTLs varied from 6.22 to 38.15%. Among these QTLs, 19 of them were detected under the natural field conditions and 30 were detected in the elevated CO2 conditions. In addition, 2 and 13 QTLs were specifically expressed in the natural and CO2-enriched conditions, respectively. Our findings have important implications on the utilization of germplasm resources for ensuring food security under elevated CO2 levels, especially for QTLs that were specifically detected under the elevated CO2 condition.
引用
收藏
页码:359 / 367
页数:8
相关论文
共 50 条
  • [41] Mapping QTLs for Traits Related to Salinity Tolerance at Seedling Stage of Rice (Oryza sativa L.): An Agrigenomics Study of an Iranian Rice Population
    Ghomi, Khadijeh
    Rabiei, Babak
    Sabouri, Hossein
    Sabouri, Atefeh
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2013, 17 (05) : 242 - 251
  • [42] Age-specific mapping of QTLs associated with cold tolerance for seedling weight in rice (Oryza sativa L.)
    Yang, Yong-Xia
    Pathak, P.K.
    Zhu, Jun
    Zhejiang Daxue Xuebao (Nongye yu Shengming Kexue Ban)/Journal of the Zhejiang University - Agriculture and Life Science, 2005, 31 (02): : 131 - 138
  • [43] Identification and expression analysis of lncRNAs in rice roots ( Oryza sativa L.) under elevated CO2 concentration and/or cadmium stress
    Feng, Ziyuan
    Wang, Xiaoyu
    Luo, Zihan
    Liu, Aihua
    Wen, Caixia
    Ma, Qi
    Liu, Wenyong
    Li, Xuemei
    Ma, Lianju
    Li, Yueying
    Yang, Bin
    Wang, Lanlan
    GENOMICS, 2025, 117 (01)
  • [44] Identification of QTLs for seed dormancy in rice (Oryza sativa L.)
    Xie, Kun
    Jiang, Ling
    Lu, BingYue
    Yang, ChunYan
    Li, LinFang
    Liu, Xi
    Zhang, Long
    Zhao, ZhiGang
    Wan, JianMin
    PLANT BREEDING, 2011, 130 (03) : 328 - 332
  • [45] Association mapping for yield and grain quality traits in rice (Oryza sativa L.)
    de Oliveira Borba, Tereza Cristina
    Vianello Brondani, Rosana Pereira
    Breseghello, Flavio
    Guedes Coelho, Alexandre Siqueira
    Mendonca, Joao Antonio
    Nakano Rangel, Paulo Hideo
    Brondani, Claudio
    GENETICS AND MOLECULAR BIOLOGY, 2010, 33 (03) : 515 - U142
  • [46] Analysis of quantitative trait loci (QTLs) associated with wettability in rice (Oryza sativa L.)
    Kang, Jong-Won
    Jan, Rahmatullah
    Kim, Kyung-Min
    EUPHYTICA, 2019, 215 (07)
  • [47] Analysis of quantitative trait loci (QTLs) associated with wettability in rice (Oryza sativa L.)
    Jong-Won Kang
    Rahmatullah Jan
    Kyung-Min Kim
    Euphytica, 2019, 215
  • [48] Meta-Comparison of Associated Agronomic Traits and QTLs with High-Temperature Tolerance in Rice (Oryza sativa L.)
    Manigbas, Norvie L.
    Grospe, Jupiter L.
    Madrid, Luvina B.
    PHILIPPINE AGRICULTURAL SCIENTIST, 2018, 101 (01): : 7 - 19
  • [49] Molecular analysis of QTLs associated with resistance to brown spot in rice (Oryza sativa L.)
    Katara, J. L.
    Sonah, H.
    Deshmukh, R. K.
    Chaurasia, Ravinder
    Kotasthane, A. S.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2010, 70 (01) : 17 - 21
  • [50] Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (Oryza sativa L.)
    Ranawake, Aloka Lanka
    Manangkil, Oliver Escano
    Yoshida, Shinya
    Ishii, Takashi
    Mori, Naoki
    Nakamura, Chiharu
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2014, 28 (06) : 989 - 998