Parameter identification of deep-bar induction motors using genetic algorithm

被引:0
|
作者
Ebrahim Rahimpour
Vahid Rashtchi
Mahmood Pesaran
机构
[1] University of Zanjan,Electrical Engineering Department, Faculty of Engineering
来源
Electrical Engineering | 2007年 / 89卷
关键词
Induction motor; Deep-bar effect; Modeling; Parameter identification; Genetic algorithm (GA);
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, the use of three-phase deep-bar induction motors in power systems has increased. Proper modeling and precise parameter identification of the model are essential for motors’ operating analysis. In this paper, among the proposed models of deep-bar induction motors, a model based on two-axis theory is discussed and developed to improve precision. A real coded genetic algorithm estimates the parameters of the model. The accuracy and validity of the model and its identified parameters are verified with the help of a 5.5 kW, 380 V, 50 Hz, 1,450 rpm deep-bar induction motor.
引用
收藏
页码:547 / 552
页数:5
相关论文
共 50 条
  • [41] COMPARATIVE-STUDY OF DYNAMIC MATHEMATICAL-MODELS FOR DEEP-BAR ROTOR INDUCTION MACHINE
    ORLOWSKAKOWALSKA, T
    MACEKKAMINSKA, K
    ELECTRIC MACHINES AND POWER SYSTEMS, 1986, 11 (05): : 387 - 400
  • [42] An improved method of induction motor parameter identification based on genetic algorithm
    Xiao, Xi
    Wang, Yating
    Xu, Qingsong
    Shi, Yuchao
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2013, 28 (SUPPL.1): : 331 - 335
  • [43] IMPROVED MODELS FOR THE SIMULATION OF DEEP BAR INDUCTION-MOTORS
    LEVY, W
    LANDY, CF
    MCCULLOCH, MD
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 1990, 5 (02) : 393 - 400
  • [44] Fault Detection and Identification Using Deep Learning Algorithms in Induction Motors
    Department of Electronic Engineering, Quaid-e-Awam University of Engineering Science and Technology, Nawabshah
    67480, Pakistan
    不详
    76062, Pakistan
    不详
    76062, Pakistan
    不详
    不详
    75350, Pakistan
    CMES Comput. Model. Eng. Sci., 2 (435-470): : 435 - 470
  • [45] Fault Detection and Identification Using Deep Learning Algorithms in Induction Motors
    Hussain, Majid
    Memon, Tayab Din
    Hussain, Imtiaz
    Memon, Zubair Ahmed
    Kumar, Dileep
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 133 (02): : 435 - 470
  • [46] Using genetic algorithm for magnitude model parameter identification
    Tan, Bin
    Zhou, Haiyun
    Zhang, Jihua
    Tan, Bitao
    Tang, Litie
    Guo, Shibo
    Journal of Information and Computational Science, 2007, 4 (04): : 1105 - 1112
  • [47] Parameter Identification of Induction Motors for Railway Traction Applications
    Tang, Jing
    Yang, Yongheng
    Diao, Lijun
    Chen, Jie
    Chang, Yujie
    Liu, Zhigang
    2018 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2018, : 284 - 288
  • [48] Comparison of Standstill Parameter Identification Methods for Induction Motors
    Khamehchi, Sina
    Molsa, Eemeli
    Hinkkanen, Marko
    2018 IEEE 9TH INTERNATIONAL SYMPOSIUM ON SENSORLESS CONTROL FOR ELECTRICAL DRIVES (SLED 2018), 2018, : 156 - 161
  • [49] Decoupling control of induction motors with motor parameter identification
    Kim, GS
    Yim, CH
    Kim, CH
    IAS '96 - CONFERENCE RECORD OF THE 1996 IEEE INDUSTRY APPLICATIONS CONFERENCE, THIRTY-FIRST IAS ANNUAL MEETING, VOLS 1-4, 1996, : 221 - 228
  • [50] Induction motor Parameter Estimation Using Hybrid Genetic Algorithm
    Sundareswaran, K.
    Shyam, H. N.
    Palani, S.
    James, Joby
    IEEE REGION 10 COLLOQUIUM AND THIRD INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, VOLS 1 AND 2, 2008, : 74 - +