Optimal liquidation under stochastic liquidity

被引:0
|
作者
Dirk Becherer
Todor Bilarev
Peter Frentrup
机构
[1] Humboldt-Universität zu Berlin,Institute of Mathematics
来源
Finance and Stochastics | 2018年 / 22卷
关键词
Stochastic liquidity; Transient price impact; Optimal liquidation; Stochastic volume effect; Singular control; Finite-fuel problem; Free boundary; Inverse local time; Elastic reflection; 35R35; 49J40; 49L20; 60H30; 60J50; 60J55; 93E20; 91G80; C02; C61; D99; G12; G33;
D O I
暂无
中图分类号
学科分类号
摘要
We solve explicitly a two-dimensional singular control problem of finite fuel type for an infinite time horizon. The problem stems from the optimal liquidation of an asset position in a financial market with multiplicative and transient price impact. Liquidity is stochastic in that the volume effect process, which determines the intertemporal resilience of the market in the spirit of Predoiu et al. (SIAM J. Financ. Math. 2:183–212, 2011), is taken to be stochastic, being driven by its own random noise. The optimal control is obtained as the local time of a diffusion process reflected at a non-constant free boundary. To solve the HJB variational inequality and prove optimality, we need a combination of probabilistic arguments and calculus of variations methods, involving Laplace transforms of inverse local times for diffusions reflected at elastic boundaries.
引用
收藏
页码:39 / 68
页数:29
相关论文
共 50 条
  • [1] Optimal liquidation under stochastic liquidity
    Becherer, Dirk
    Bilarev, Todor
    Frentrup, Peter
    FINANCE AND STOCHASTICS, 2018, 22 (01) : 39 - 68
  • [2] The Optimal Liquidation Model Under Stochastic Market Impact
    Hu, Shuntai
    Bian, Baojun
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 8295 - 8300
  • [3] Optimal Liquidation of an Asset under Drift Uncertainty
    Ekstrom, Erik
    Vaicenavicius, Juozas
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2016, 7 (01): : 357 - 381
  • [4] Optimal Asset Liquidation with Multiplicative Transient Price Impact
    Becherer, Dirk
    Bilarev, Todor
    Frentrup, Peter
    APPLIED MATHEMATICS AND OPTIMIZATION, 2018, 78 (03) : 643 - 676
  • [5] Optimal Asset Liquidation with Multiplicative Transient Price Impact
    Dirk Becherer
    Todor Bilarev
    Peter Frentrup
    Applied Mathematics & Optimization, 2018, 78 : 643 - 676
  • [6] Optimal trade execution in order books with stochastic liquidity
    Fruth, Antje
    Schoneborn, Torsten
    Urusov, Mikhail
    MATHEMATICAL FINANCE, 2019, 29 (02) : 507 - 541
  • [7] Optimal liquidation under partial information with price impact
    Colaneri, Katia
    Eksi, Zehra
    Frey, Ruediger
    Szoelgyenyi, Michaela
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (04) : 1913 - 1946
  • [8] Optimal liquidation under indirect price impact with propagator
    Dupret, Jean-Loup
    Hainaut, Donatien
    QUANTITATIVE FINANCE, 2025, 25 (03) : 359 - 381
  • [9] Optimal trade execution under small market impact and portfolio liquidation with semimartingale strategies
    Horst, Ulrich
    Kivman, Evgueni
    FINANCE AND STOCHASTICS, 2024, 28 (03) : 759 - 812
  • [10] Stochastic Maximum Principle for Optimal Liquidation with Control-Dependent Terminal Time
    Cesari, Riccardo
    Zheng, Harry
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (03)