On intersections of independent anisotropic Gaussian random fields

被引:0
|
作者
ZhenLong Chen
YiMin Xiao
机构
[1] Zhejiang Gongshang University,School of Statistics and Mathematics
[2] Michigan State University,Department of Statistics and Probability
来源
Science China Mathematics | 2012年 / 55卷
关键词
intersection; anisotropic Gaussian fields; hitting probability; Hausdorff dimension; stochastic heat equation; fractional Brownian sheet; 60G15; 60G17; 60G60;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X^H = \{ X^H (s),s \in \mathbb{R}^{N_1 } \} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X^K = \{ X^K (t),t \in \mathbb{R}^{N_2 } \} $\end{document} be two independent anisotropic Gaussian random fields with values in ℝd with indices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H = (H_1 ,...,H_{N_1 } ) \in (0,1)^{N_1 } ,K = (K_1 ,...,K_{N_2 } ) \in (0,1)^{N_2 } $\end{document}, respectively. Existence of intersections of the sample paths of XH and XK is studied. More generally, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_1 \subseteq \mathbb{R}^{N_1 } ,E_2 \subseteq \mathbb{R}^{N_2 } $\end{document} and F ⊂ ℝd be Borel sets. A necessary condition and a sufficient condition for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{P}\{ (X^H (E_1 ) \cap X^K (E_2 )) \cap F \ne \not 0\} > 0$\end{document} in terms of the Bessel-Riesz type capacity and Hausdorff measure of E1 × E2 × F in the metric space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathbb{R}^{N_1 + N_2 + d} ,\tilde \rho )$\end{document} are proved, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde \rho $\end{document} is a metric defined in terms of H and K. These results are applicable to solutions of stochastic heat equations driven by space-time Gaussian noise and fractional Brownian sheets.
引用
收藏
页码:2217 / 2232
页数:15
相关论文
共 50 条
  • [21] Dimension Results for Space-anisotropic Gaussian Random Fields
    Wen Qing NI
    Zhen Long CHEN
    Wei Gang WANG
    ActaMathematicaSinica, 2019, 35 (03) : 391 - 406
  • [22] Chung's law of the iterated logarithm for anisotropic Gaussian random fields
    Luan, Nana
    Xiao, Yimin
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (23-24) : 1886 - 1895
  • [23] Hausdorff Measure of the Range of Space–Time Anisotropic Gaussian Random Fields
    Wenqing Ni
    Zhenlong Chen
    Journal of Theoretical Probability, 2021, 34 : 264 - 282
  • [24] Packing Dimension of Space-time Anisotropic Gaussian Random Fields
    Zhen Long Chen
    Jun Wang
    Dong Sheng Wu
    Acta Mathematica Sinica, English Series, 2021, 37 : 1826 - 1840
  • [25] Packing Dimension of Space-time Anisotropic Gaussian Random Fields
    Chen, Zhen Long
    Wang, Jun
    Wu, Dong Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (12) : 1826 - 1840
  • [26] Continuity in the Hurst index of the local times of anisotropic Gaussian random fields
    Wu, Dongsheng
    Xiao, Yimin
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (06) : 1823 - 1844
  • [27] Packing Dimension of Space-time Anisotropic Gaussian Random Fields
    Zhen Long CHEN
    Jun WANG
    Dong Sheng WU
    ActaMathematicaSinica,EnglishSeries, 2021, (12) : 1826 - 1840
  • [28] GAUSSIAN RANDOM FIELDS
    GUDDER, SP
    FOUNDATIONS OF PHYSICS, 1978, 8 (3-4) : 295 - 302
  • [29] Fitting Gaussian Markov random fields to Gaussian fields
    Rue, H
    Tjelmeland, H
    SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 31 - 49
  • [30] FERNIQUE-TYPE INEQUALITIES AND MODULI OF CONTINUITY FOR ANISOTROPIC GAUSSIAN RANDOM FIELDS
    Meerschaert, Mark M.
    Wang, Wensheng
    Xiao, Yimin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (02) : 1081 - 1107