Perspectives: Quantum Mechanics on Phase Space

被引:0
作者
J. A. Brooke
F. E. Schroeck
机构
[1] University of Saskatchewan,Department of Mathematics and Statistics
[2] University of Denver,undefined
[3] Florida Atlantic University,undefined
[4] University of Saskatchewan,undefined
来源
International Journal of Theoretical Physics | 2005年 / 44卷
关键词
phase space; quantum theory; quantization; SIC; Heyting effect algebra;
D O I
暂无
中图分类号
学科分类号
摘要
The basic ideas in the theory of quantum mechanics on phase space are illustrated through an introduction of generalities, which seem to underlie most if not all such formulations and follow with examples taken primarily from kinematical particle model descriptions exhibiting either Galileian or Lorentzian symmetry. The structures of fundamental importance are the relevant (Lie) groups of symmetries and their homogeneous (and associated) spaces that, in the situations of interest, also possess Hamiltonian structures. Comments are made on the relation between the theory outlined and a recent paper by Carmeli, Cassinelli, Toigo, and Vacchini.
引用
收藏
页码:1889 / 1904
页数:15
相关论文
共 41 条
[1]  
Ali S. T.(1988)undefined Canadian Journal of Physics 66 238-244
[2]  
Brooke J. A.(1986)undefined Acta Applicandae Mathematicae 6 19-45
[3]  
Busch P.(1986)undefined Acta Applicandae Mathematicae 6 47-62
[4]  
Gagnon R.(1954)undefined Annals of Mathematics 59 1-17
[5]  
Schroeck F. E.(1996)undefined Journal of Mathematical Physics 37 5958-5986
[6]  
Ali S. T.(1989)undefined Nuclear Physics B (Proceedings Supplement) 6 104-106
[7]  
Prugovečki E.(1991)undefined International Journal of Theoretical Physics 30 1217-1227
[8]  
Ali S. T.(2004)undefined Journal of Physics A: Mathematical and General 37 5057-5066
[9]  
Prugovečki E.(1905a)undefined Annalen der Physik 17 891-921
[10]  
Bargmann V.(1905b)undefined Annalen der Physik 18 639-641