Exceptional set for sums of unlike powers of primes (II)

被引:0
|
作者
Min Zhang
Jinjiang Li
机构
[1] Beijing Information Science and Technology University,School of Applied Science
[2] China University of Mining and Technology,Department of Mathematics
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Waring–Goldbach problem; Circle method; Exceptional set; 11P05; 11P32; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
Let N be a sufficiently large integer. In this paper, it is proved that, with at most O(N7/18+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^{7/18+\varepsilon })$$\end{document} exceptions, all even positive integers up to N can be represented in the form p12+p22+p33+p43+p54+p64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4$$\end{document}, where p1,p2,p3,p4,p5,p6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3,p_4,p_5,p_6$$\end{document} are prime numbers, which constitutes an improvement over some previous work.
引用
收藏
页码:131 / 140
页数:9
相关论文
共 50 条