Exceptional set for sums of unlike powers of primes (II)

被引:0
|
作者
Min Zhang
Jinjiang Li
机构
[1] Beijing Information Science and Technology University,School of Applied Science
[2] China University of Mining and Technology,Department of Mathematics
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Waring–Goldbach problem; Circle method; Exceptional set; 11P05; 11P32; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
Let N be a sufficiently large integer. In this paper, it is proved that, with at most O(N7/18+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^{7/18+\varepsilon })$$\end{document} exceptions, all even positive integers up to N can be represented in the form p12+p22+p33+p43+p54+p64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4$$\end{document}, where p1,p2,p3,p4,p5,p6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3,p_4,p_5,p_6$$\end{document} are prime numbers, which constitutes an improvement over some previous work.
引用
收藏
页码:131 / 140
页数:9
相关论文
共 50 条
  • [21] On pairs of equations in unlike powers of primes and powers of 2
    Hu, Liqun
    Yang, Li
    OPEN MATHEMATICS, 2017, 15 : 1487 - 1494
  • [22] Slim exceptional set for sums of two squares, two cubes, and two biquadrates of primes
    Rui Zhang
    Frontiers of Mathematics in China, 2019, 14 : 1017 - 1035
  • [23] Slim exceptional set for sums of two squares, two cubes, and two biquadrates of primes
    Zhang, Rui
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (05) : 1017 - 1035
  • [24] A Diophantine approximation problem with unlike powers of primes
    Li, Xinyan
    Ge, Wenxu
    AIMS MATHEMATICS, 2025, 10 (01): : 736 - 753
  • [25] Goldbach-Linnik Problem on Unlike Powers of Primes and Powers of Two
    Hu, Liqun
    Long, Xuan
    Wang, Huimin
    FRONTIERS OF MATHEMATICS, 2025,
  • [26] On Exceptional Sets for Waring-Goldbach Problems with Unlike Powers
    Zhang, Rui
    Zhang, Wei
    FRONTIERS OF MATHEMATICS, 2025,
  • [27] On sums of powers of almost equal primes
    Kumchev, Angel
    Liu, Huafeng
    JOURNAL OF NUMBER THEORY, 2017, 176 : 344 - 364
  • [28] Two results on unlike powers of primes and powers of 2 in the Waring–Goldbach problem
    Liqun Hu
    The Ramanujan Journal, 2023, 60 : 1081 - 1094
  • [29] On sums of biquadratic powers with almost equal primes
    Xiumin Ren
    Wei Zhang
    The Ramanujan Journal, 2022, 57 : 71 - 78
  • [30] On sums of biquadratic powers with almost equal primes
    Ren, Xiumin
    Zhang, Wei
    RAMANUJAN JOURNAL, 2022, 57 (01) : 71 - 78