Distances between optimal solutions of mixed-integer programs

被引:0
|
作者
Joseph Paat
Robert Weismantel
Stefan Weltge
机构
[1] ETH Zurich,Institute for Operations Research
[2] Technical University of Munich,undefined
来源
Mathematical Programming | 2020年 / 179卷
关键词
90C11; 11B75;
D O I
暂无
中图分类号
学科分类号
摘要
A classic result of Cook et al. (Math. Program. 34:251–264, 1986) bounds the distances between optimal solutions of mixed-integer linear programs and optimal solutions of the corresponding linear relaxations. Their bound is given in terms of the number of variables and a parameter Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varDelta $$\end{document}, which quantifies sub-determinants of the underlying linear inequalities. We show that this distance can be bounded in terms of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varDelta $$\end{document} and the number of integer variables rather than the total number of variables. To this end, we make use of a result by Olson (J. Number Theory 1:8–10, 1969) in additive combinatorics and demonstrate how it implies feasibility of certain mixed-integer linear programs. We conjecture that our bound can be improved to a function that only depends on Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varDelta $$\end{document}, in general.
引用
收藏
页码:455 / 468
页数:13
相关论文
共 50 条
  • [31] Extending the QCR method to general mixed-integer programs
    Billionnet, Alain
    Elloumi, Sourour
    Lambert, Amelie
    MATHEMATICAL PROGRAMMING, 2012, 131 (1-2) : 381 - 401
  • [32] Coefficient strengthening: a tool for reformulating mixed-integer programs
    Kent Andersen
    Yves Pochet
    Mathematical Programming, 2010, 122 : 121 - 154
  • [33] SOLVING MIXED-INTEGER NONLINEAR PROGRAMS BY OUTER APPROXIMATION
    FLETCHER, R
    LEYFFER, S
    MATHEMATICAL PROGRAMMING, 1994, 66 (03) : 327 - 349
  • [34] Global solution of nonlinear mixed-integer bilevel programs
    Alexander Mitsos
    Journal of Global Optimization, 2010, 47 : 557 - 582
  • [35] Mixed-integer nonlinear programs featuring “on/off” constraints
    Hassan Hijazi
    Pierre Bonami
    Gérard Cornuéjols
    Adam Ouorou
    Computational Optimization and Applications, 2012, 52 : 537 - 558
  • [36] On Robustness of Mixed-Integer reformulations of Generalized Disjunctive Programs
    Bogataj, Milos
    Kravanja, Zdravko
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2019, 46 : 1117 - 1122
  • [37] Distributed Solving of Mixed-Integer Programs with GLPK and Thrift
    Gurski, Frank
    Rethmann, Jochen
    OPERATIONS RESEARCH PROCEEDINGS 2016, 2018, : 599 - 605
  • [38] Solving hard mixed-integer programs for electricity generation
    Ceria, S
    NEXT GENERATION OF ELECTRIC POWER UNIT COMMITMENT MODELS, 2001, 36 : 153 - 166
  • [39] Taming Binarized Neural Networks and Mixed-Integer Programs
    Aspman, Johannes
    Korpas, Georgios
    Marecek, Jakub
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 10, 2024, : 10935 - 10943
  • [40] Extending the QCR method to general mixed-integer programs
    Alain Billionnet
    Sourour Elloumi
    Amélie Lambert
    Mathematical Programming, 2012, 131 : 381 - 401