Two-Point Boundary Value Problem for Volterra–Fredholm Integro-Differential Equations and Its Numerical Analysis

被引:0
|
作者
A. T. Assanova
E. A. Bakirova
Zh. M. Kadirbayeva
机构
[1] Institute of Mathematics and Mathematical Modeling,
[2] Department of Differential Equations,undefined
[3] Kazakh National Women’s Teacher Training University,undefined
[4] International Information Technology University,undefined
[5] Department of Mathematical and Computer Modeling,undefined
来源
Lobachevskii Journal of Mathematics | 2023年 / 44卷
关键词
two-point boundary value problem; Volterra–Fredholm integro-differential equations; parameter; algorithm; numerical solution;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1100 / 1110
页数:10
相关论文
共 50 条
  • [1] Two-Point Boundary Value Problem for Volterra-Fredholm Integro-Differential Equations and Its Numerical Analysis
    Assanova, A. T.
    Bakirova, E. A.
    Kadirbayeva, Zh. M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (03) : 1100 - 1110
  • [2] Two-point boundary value problem of integro-differential equations of mixed type in Banach spaces
    Song, GX
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (02): : 193 - 205
  • [3] A Two-Point Boundary Value Problem for a Fourth Order Partial Integro-Differential Equation
    A. T. Assanova
    Lobachevskii Journal of Mathematics, 2021, 42 : 526 - 535
  • [4] A Two-Point Boundary Value Problem for a Fourth Order Partial Integro-Differential Equation
    Assanova, A. T.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (03) : 526 - 535
  • [5] An improved reproducing kernel method for Fredholm integro-differential type two-point boundary value problems
    Xue, Qing
    Niu, Jing
    Yu, Dandan
    Ran, Cuiping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (05) : 1015 - 1023
  • [6] A new efficient technique for solving two-point boundary value problems for integro-differential equations
    Singh, Randhir
    Nelakanti, Gnaneshwar
    Kumar, Jitendra
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (08) : 2030 - 2051
  • [7] Solving multi-point problem for Volterra-Fredholm integro-differential equations using Dzhumabaev parameterization method
    Bakirova, Elmira A.
    Assanova, Anar T.
    Kadirbayeva, Zhazira M.
    OPEN MATHEMATICS, 2024, 22 (01):
  • [8] On solvability of boundary value problem for a nonlinear Fredholm integro-differential equation
    Assanova, A. T.
    Zhumatov, S. S.
    Mynbayeva, S. T.
    Karakenova, S. G.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01): : 25 - 34
  • [9] A compact discretization of the boundary value problems of the nonlinear Fredholm integro-differential equations
    Amiri, Sadegh
    Hajipour, Mojtaba
    JOURNAL OF MATHEMATICAL MODELING, 2024, 12 (02): : 233 - 246
  • [10] A METHOD OF SOLVING A NONLINEAR BOUNDARY VALUE PROBLEM FOR THE FREDHOLM INTEGRO-DIFFERENTIAL EQUATION
    Dzhumabaev, Dulat S.
    Mynbayeva, Sandugash
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2021, 33 (01) : 53 - 75