Invariant Systems with Dissipative Operators

被引:0
作者
Moufida Amiour
Mustapha Fateh Yarou
机构
[1] Jijel University,LMPA Laboratory, Department of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2018年 / 44卷
关键词
Dissipative set-valued maps; Differential inclusion; Weak and strong invariant system; Approximate trajectories; Lower and upper Hamiltonian; Primary 34A60; Secondary 49J52;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the study of the strong and weak invariance property of a system (S, F), where S is a closed subset of a Hilbert space H, and F an autonomous set-valued mapping defined on H; under a dissipative condition. We give a characterization of “approximate” strongly and weakly invariant systems in H and state the equivalence between week and strong invariance in finite dimensional setting.
引用
收藏
页码:643 / 657
页数:14
相关论文
共 32 条
  • [1] Bony JM(1969)Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés Ann. Inst. Fourier Grenoble 19 277-304
  • [2] Brezis H(1970)On a characterization of flow-invariant sets Commun. Pure Appl. Math. 23 261-263
  • [3] Clarke F(1997)Approximate invaraince and differential inclusions in Hilbert spaces J. Dyn. Control Syst. 3 493-518
  • [4] Ledyaev Yu(1995)Qualitative properties of trajectories of control theory: a survey J. Dyn. Control Syst. 1 1-48
  • [5] Radulescu M(1972)A generalization of Peano’s theorem and flow invariance Proc. Am. Math. Soc. 36 51-55
  • [6] Clarke F(1994)Periodic solutions of dry friction problems J. Z. Angew. Math. Phys. 45 53-60
  • [7] Ledyaev Yu(2002)Properties of the reachable set of control systems Syst. Control Lett. 46 379-386
  • [8] Stern R(2005)Strong invariance and one-sided Lipschitz multifunctions Nonlinear Anal. 60 849-862
  • [9] Wolneski P(1995)Measurable viability theorems and the Hamilton–Jacobi–Bellman equation J. Differ. Equ. 116 265-305
  • [10] Crandall MG(1996)A measurable upper semicontinuous viability theorem for tubes Nonlinear Anal. Theory Methods Appl. 26 565-582