Symmetric cubic graphs via rigid cells

被引:0
|
作者
Marston D. E. Conder
Ademir Hujdurović
Klavdija Kutnar
Dragan Marušič
机构
[1] University of Auckland,Department of Mathematics
[2] University of Primorska,undefined
[3] UP IAM,undefined
[4] University of Primorska,undefined
[5] UP FAMNIT,undefined
[6] IMFM,undefined
来源
Journal of Algebraic Combinatorics | 2021年 / 53卷
关键词
Automorphism group; Arc-transitive; Symmetric cubic graph; Rigid cell;
D O I
暂无
中图分类号
学科分类号
摘要
Properties of symmetric cubic graphs are described via their rigid cells, which are maximal connected subgraphs fixed pointwise by some involutory automorphism of the graph. This paper completes the description of rigid cells and the corresponding involutions for each of the 17 ‘action types’ of symmetric cubic graphs.
引用
收藏
页码:881 / 895
页数:14
相关论文
共 47 条
  • [1] Symmetric cubic graphs via rigid cells
    Conder, Marston D. E.
    Hujdurovic, Ademir
    Kutnar, Klavdija
    Marusic, Dragan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (03) : 881 - 895
  • [2] Odd extensions of transitive groups via symmetric graphs - The cubic case
    Kutnar, Klavdija
    Marusic, Dragan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 136 : 170 - 192
  • [3] A note on automorphism groups of symmetric cubic graphs
    Ma, Jicheng
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (01)
  • [4] A complete classification of cubic symmetric graphs of girth 6
    Kutnar, Klavdija
    Marusic, Dragan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (01) : 162 - 184
  • [5] Symmetric cubic graphs with non-solvable automorphism groups
    Ma, Jicheng
    Zhou, Jin-Xin
    DISCRETE MATHEMATICS, 2022, 345 (06)
  • [6] Automorphism Groups of a Class of Cubic Cayley Graphs on Symmetric Groups
    Huang, Xueyi
    Huang, Qiongxiang
    Lu, Lu
    ALGEBRA COLLOQUIUM, 2017, 24 (04) : 541 - 550
  • [7] The Characteristic Polynomials of Symmetric Graphs
    Chbili, Nafaa
    Al Dhaheri, Shamma
    Tahnon, Mei Y.
    Abunamous, Amna A. E.
    SYMMETRY-BASEL, 2018, 10 (11):
  • [8] Symmetric graphs and interconnection networks
    Li, Jing Jian
    Ling, Bo
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 83 : 461 - 467
  • [9] A note on connected cubic Cayley graphs
    Han, Hua
    Lu, Zai Ping
    DISCRETE MATHEMATICS, 2013, 313 (18) : 1763 - 1766
  • [10] Locally Symmetric Graphs of Girth 4
    Perles, Micha A.
    Martini, Horst
    Kupitz, Yaakov S.
    JOURNAL OF GRAPH THEORY, 2013, 73 (01) : 44 - 65