Steady Periodic Water Waves with Unbounded Vorticity: Equivalent Formulations and Existence Results

被引:0
作者
Calin Iulian Martin
Bogdan-Vasile Matioc
机构
[1] Institut für Mathematik,
[2] Universität Wien,undefined
来源
Journal of Nonlinear Science | 2014年 / 24卷
关键词
Equivalent formulations; Local bifurcation; Unbounded vorticity; Gravity waves; Capillary-gravity waves; Capillary waves; 35J60; 76B03; 76B15; 76B45; 47J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the steady water wave problem for waves that possess a merely Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_r$$\end{document}-integrable vorticity, with r∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in (1,\infty )$$\end{document} being arbitrary. We first establish the equivalence of the three formulations – the velocity formulation, the stream function formulation, and the height function formulation – in the setting of strong solutions, regardless of the value of r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}. Based upon this result and using a suitable notion of weak solution for the height function formulation, we then establish, by means of local bifurcation theory, the existence of small-amplitude capillary and capillary–gravity water waves with an Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_r$$\end{document}-integrable vorticity.
引用
收藏
页码:633 / 659
页数:26
相关论文
共 53 条
[11]  
Strauss W(2007)Particle trajectories in linear periodic capillary and capillary-gravity deep-water waves J. Nonlinear Math. Phys. 14 1-7
[12]  
Constantin A(2010)Analyticity of the streamlines for periodic travelling free surface capillary-gravity water waves with vorticity SIAM J. Math. Anal. 42 3103-3111
[13]  
Varvaruca E(2012)Regularity for steady periodic capillary water waves with vorticity Philos. Trans. R Soc. Lond. A 370 1616-1628
[14]  
Crandall MG(2009)Nonlinear water waves on uniform current in Lagrangian coordinates J. Nonlinear Math. Phys. 16 47-61
[15]  
Rabinowitz PH(1989)Small amplitude capillary-gravity waves in a channel of finite depth Glasgow Math. J. 31 141-160
[16]  
Escher J.(1985)The bifurcation and secondary bifurcation of capillary-gravity waves Proc. R Soc. Lond. Ser. A 399 391-417
[17]  
Matioc B.-V.(1986)Symmetry and the bifurcation of capillary-gravity waves Arch. Ration. Mech. Anal. 96 29-53
[18]  
Henry D(2011)On the flow map for 2D Euler equations with unbounded vorticity Nonlinearity 24 2599-2637
[19]  
Henry D(2007)Large-amplitude steady rotational water waves Eur. J Mech. B Fluids 27 96-109
[20]  
Henry D(2008)Effect of vorticity on steady water waves J. Fluid Mech. 608 197-215