Steady Periodic Water Waves with Unbounded Vorticity: Equivalent Formulations and Existence Results

被引:0
作者
Calin Iulian Martin
Bogdan-Vasile Matioc
机构
[1] Institut für Mathematik,
[2] Universität Wien,undefined
来源
Journal of Nonlinear Science | 2014年 / 24卷
关键词
Equivalent formulations; Local bifurcation; Unbounded vorticity; Gravity waves; Capillary-gravity waves; Capillary waves; 35J60; 76B03; 76B15; 76B45; 47J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the steady water wave problem for waves that possess a merely Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_r$$\end{document}-integrable vorticity, with r∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in (1,\infty )$$\end{document} being arbitrary. We first establish the equivalence of the three formulations – the velocity formulation, the stream function formulation, and the height function formulation – in the setting of strong solutions, regardless of the value of r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}. Based upon this result and using a suitable notion of weak solution for the height function formulation, we then establish, by means of local bifurcation theory, the existence of small-amplitude capillary and capillary–gravity water waves with an Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_r$$\end{document}-integrable vorticity.
引用
收藏
页码:633 / 659
页数:26
相关论文
共 53 条
[1]  
Benjamin BT(1962)The solitary wave on a stream with an arbitrary distribution of vorticity J. Fluid Mech. 12 97-116
[2]  
Clamond D(2012)Note on the velocity and related fields of steady irrotational two-dimensional surface gravity waves Philos. Trans. R Soc. Lond. Ser. A Math. Phys. Eng. Sci. 370 1572-1586
[3]  
Constantin A(2006)The trajectories of particles in Stokes waves Invent. Math. 166 523-535
[4]  
Constantin A(2011)Analyticity of periodic traveling free surface water waves with vorticity Ann. Math. 173 559-568
[5]  
Escher J(2004)Exact steady periodic water waves with vorticity Commun. Pure Appl. Math. 57 481-527
[6]  
Constantin A(2010)Pressure beneath a Stokes wave Commun. Pure Appl. Math. 63 533-557
[7]  
Strauss W(2011)Periodic traveling gravity water waves with discontinuous vorticity Arch. Ration. Mech. Anal. 202 133-175
[8]  
Constantin A(2011)Steady periodic water waves with constant vorticity: regularity and local bifurcation Arch. Ration. Mech. Anal. 199 33-67
[9]  
Strauss W(1971)Bifurcation from simple eigenvalues J. Funct. Anal. 8 321-340
[10]  
Constantin A(2014)On the analyticity of periodic gravity water waves with integrable vorticity function Differ. Integral Equ. 27 217-232