Solubility and Critical Phenomena in Ternary Aqueous Solutions Containing Type-2 Salt and Alkali

被引:0
|
作者
M. A. Urusova
V. M. Valyashko
机构
[1] Russian Academy of Sciences,Kurnakov Institute of General and Inorganic Chemistry
关键词
ternary water–salts systems; supercritical phase equilibria; phase diagrams;
D O I
暂无
中图分类号
学科分类号
摘要
Supercritical phase equilibria in the ternary system K2SO4–KOH–H2O at 420–500°C and up to 130 MPa pressure with binary boundary subsystems of different types are studied. The binary subsystem of type 1 features no critical phenomena in saturated (l = g) aqueous solution and no phase separation (l1–l2) (KOH–H2O); the binary subsystem of type 2 is characterized by immiscibility of the liquid phase and has two critical end-points p(g=l−SK2SO4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(g = l-_{S_{K_{2}SO_{4}}})$$\end{document} and Q(l1=l2−SK2SO4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(l_{1} = l_{2}-_{S_{K_{2}SO_{4}}})$$\end{document} in saturated aqueous solution (K2SO4–H2O). The ternary system has two three-phase equilibria (g–l–s) and (l1–l2–s), separated by a two-phase supercritical fluid region (fl−SK2SO4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(fl-_{S_{K_{2}SO_{4}}})$$\end{document}, and two types of monovariant critical curves (g=l−SK2SO4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g=l-_{S_{K_{2}SO_{4}}})$$\end{document} and (l1=l2−SK2SO4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(l_{1}=l_{2}-_{S_{K_{2}SO_{4}}})$$\end{document}. The three-phase regions approach each other upon temperature increase up to the point where the two-phase supercritical equilibrium disappears, and the two mentioned monovariant critical curves are joined into a double homogeneous critical point (g=l−SK2SO4↔l1=l2−SK2SO4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g=l-_{S_{K_{2}SO_{4}}} \leftrightarrow l_{1} = l_{2}-_{S_{K_{2}SO_{4}}})$$\end{document} at maximum temperature ~445°C and 51–52 MPa.
引用
收藏
页码:1322 / 1329
页数:7
相关论文
共 50 条