Sunflowers and Testing Triangle-Freeness of Functions

被引:0
|
作者
Ishay Haviv
Ning Xie
机构
[1] The Academic College of Tel Aviv-Yaffo,School of Computer Science
[2] Florida International University,SCIS
来源
computational complexity | 2017年 / 26卷
关键词
property testing; triangle-freeness; sunflowers; 68Q17; 68Q25; 68W20; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
A function f:F2n→{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f : {\mathbb F}_{2}^{n} \rightarrow {\{0,1\}}}$$\end{document} is triangle-free if there are no x1,x2,x3∈F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{1},x_{2},x_{3} \in {\mathbb F}_{2}^{n}}$$\end{document} satisfying x1+x2+x3=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{1} + x_{2} + x_{3} = 0}$$\end{document} and f(x1)=f(x2)=f(x3)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(x_{1}) = f(x_{2}) = f(x_{3}) = 1}$$\end{document}. In testing triangle-freeness, the goal is to distinguish with high probability triangle-free functions from those that are ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document}-far from being triangle-free. It was shown by Green that the query complexity of the canonical tester for the problem is upper bounded by a function that depends only on ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} (Green 2005); however, the best-known upper bound is a tower-type function of 1/ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1/\varepsilon}$$\end{document}. The best known lower bound on the query complexity of the canonical tester is 1/ε13.239\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1/\varepsilon^{13.239}}$$\end{document} (Fu & Kleinberg 2014).
引用
收藏
页码:497 / 530
页数:33
相关论文
共 24 条
  • [21] Quantum cryptographic property testing of multi-output Boolean functions
    Cui, Jingyi
    Guo, Jiansheng
    QUANTUM INFORMATION PROCESSING, 2019, 18 (06)
  • [22] Beyond Talagrand Functions: New Lower Bounds for Testing Monotonicity and Unateness
    Chen, Xi
    Waingarten, Erik
    Xie, Jinyu
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 523 - 536
  • [23] Quantum cryptographic property testing of multi-output Boolean functions
    Jingyi Cui
    Jiansheng Guo
    Quantum Information Processing, 2019, 18
  • [24] PUFmeter a Property Testing Tool for Assessing the Robustness of Physically Unclonable Functions to Machine Learning Attacks
    Ganji, Fatemeh
    Forte, Domenic
    Seifert, Jean-Pierre
    IEEE ACCESS, 2019, 7 : 122513 - 122521