Sunflowers and Testing Triangle-Freeness of Functions

被引:0
|
作者
Ishay Haviv
Ning Xie
机构
[1] The Academic College of Tel Aviv-Yaffo,School of Computer Science
[2] Florida International University,SCIS
来源
computational complexity | 2017年 / 26卷
关键词
property testing; triangle-freeness; sunflowers; 68Q17; 68Q25; 68W20; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
A function f:F2n→{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f : {\mathbb F}_{2}^{n} \rightarrow {\{0,1\}}}$$\end{document} is triangle-free if there are no x1,x2,x3∈F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{1},x_{2},x_{3} \in {\mathbb F}_{2}^{n}}$$\end{document} satisfying x1+x2+x3=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{1} + x_{2} + x_{3} = 0}$$\end{document} and f(x1)=f(x2)=f(x3)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(x_{1}) = f(x_{2}) = f(x_{3}) = 1}$$\end{document}. In testing triangle-freeness, the goal is to distinguish with high probability triangle-free functions from those that are ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document}-far from being triangle-free. It was shown by Green that the query complexity of the canonical tester for the problem is upper bounded by a function that depends only on ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} (Green 2005); however, the best-known upper bound is a tower-type function of 1/ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1/\varepsilon}$$\end{document}. The best known lower bound on the query complexity of the canonical tester is 1/ε13.239\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1/\varepsilon^{13.239}}$$\end{document} (Fu & Kleinberg 2014).
引用
收藏
页码:497 / 530
页数:33
相关论文
共 24 条
  • [11] Testing Properties of Functions on Finite Groups
    Oono, Kenta
    Yoshida, Yuichi
    RANDOM STRUCTURES & ALGORITHMS, 2016, 49 (03) : 579 - 598
  • [12] Testing Lipschitz Functions on Hypergrid Domains
    Pranjal Awasthi
    Madhav Jha
    Marco Molinaro
    Sofya Raskhodnikova
    Algorithmica, 2016, 74 : 1055 - 1081
  • [13] Testing Lipschitz Functions on Hypergrid Domains
    Awasthi, Pranjal
    Jha, Madhav
    Molinaro, Marco
    Raskhodnikova, Sofya
    ALGORITHMICA, 2016, 74 (03) : 1055 - 1081
  • [14] Robust Testing of Low Dimensional Functions
    De, Anindya
    Mossel, Elchanan
    Neeman, Joe
    STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2021, : 584 - 597
  • [15] TESTING AND RECONSTRUCTION OF LIPSCHITZ FUNCTIONS WITH APPLICATIONS TO DATA PRIVACY
    Jha, Madhav
    Raskhodnikova, Sofya
    SIAM JOURNAL ON COMPUTING, 2013, 42 (02) : 700 - 731
  • [16] Testing and Reconstruction of Lipschitz Functions with Applications to Data Privacy
    Jha, Madhav
    Raskhodnikova, Sofya
    2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, : 433 - 442
  • [17] Lower Bounds for Testing Properties of Functions over Hypergrid Domains
    Blais, Eric
    Raskhodnikova, Sofya
    Yaroslavtsev, Grigory
    2014 IEEE 29TH CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2014, : 309 - 320
  • [18] Testing membership in formal languages implicitly represented by boolean functions
    Bollig, Beate
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2006, 12 (06) : 710 - 724
  • [19] Testing k-Monotonicity The Rise and Fall of Boolean Functions
    Canonne, Clement L.
    Grigorescu, Elena
    Guo, Siyao
    Kumar, Akash
    Wimmer, Karl
    THEORY OF COMPUTING, 2019, 15 (01) : 1 - 55
  • [20] Isoperimetric inequalities for real-valued functions with applications to monotonicity testing
    Black, Hadley
    Kalemaj, Iden
    Raskhodnikova, Sofya
    RANDOM STRUCTURES & ALGORITHMS, 2024, 65 (01) : 191 - 219