Sunflowers and Testing Triangle-Freeness of Functions

被引:0
|
作者
Ishay Haviv
Ning Xie
机构
[1] The Academic College of Tel Aviv-Yaffo,School of Computer Science
[2] Florida International University,SCIS
来源
computational complexity | 2017年 / 26卷
关键词
property testing; triangle-freeness; sunflowers; 68Q17; 68Q25; 68W20; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
A function f:F2n→{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f : {\mathbb F}_{2}^{n} \rightarrow {\{0,1\}}}$$\end{document} is triangle-free if there are no x1,x2,x3∈F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{1},x_{2},x_{3} \in {\mathbb F}_{2}^{n}}$$\end{document} satisfying x1+x2+x3=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{1} + x_{2} + x_{3} = 0}$$\end{document} and f(x1)=f(x2)=f(x3)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(x_{1}) = f(x_{2}) = f(x_{3}) = 1}$$\end{document}. In testing triangle-freeness, the goal is to distinguish with high probability triangle-free functions from those that are ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document}-far from being triangle-free. It was shown by Green that the query complexity of the canonical tester for the problem is upper bounded by a function that depends only on ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} (Green 2005); however, the best-known upper bound is a tower-type function of 1/ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1/\varepsilon}$$\end{document}. The best known lower bound on the query complexity of the canonical tester is 1/ε13.239\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1/\varepsilon^{13.239}}$$\end{document} (Fu & Kleinberg 2014).
引用
收藏
页码:497 / 530
页数:33
相关论文
共 24 条
  • [1] Sunflowers and Testing Triangle-Freeness of Functions
    Haviv, Ishay
    Xie, Ning
    PROCEEDINGS OF THE 6TH INNOVATIONS IN THEORETICAL COMPUTER SCIENCE (ITCS'15), 2015, : 356 - 365
  • [2] Sunflowers and Testing Triangle-Freeness of Functions
    Haviv, Ishay
    Xie, Ning
    COMPUTATIONAL COMPLEXITY, 2017, 26 (02) : 497 - 530
  • [3] Lower bounds for testing triangle-freeness in Boolean functions
    Arnab Bhattacharyya
    Ning Xie
    computational complexity, 2015, 24 : 65 - 101
  • [4] Lower bounds for testing triangle-freeness in Boolean functions
    Bhattacharyya, Arnab
    Xie, Ning
    COMPUTATIONAL COMPLEXITY, 2015, 24 (01) : 65 - 101
  • [5] Testing triangle-freeness in general graphs
    Alon, Noga
    Kaufman, Tali
    Krivelevich, Michael
    Ron, Dana
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) : 786 - 819
  • [6] Testing Subdivision-Freeness: - Property Testing Meets Structural Graph Theory -
    Kawarabayashi, Ken-ichi
    Yoshida, Yuichi
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 437 - 445
  • [7] Testing piecewise functions
    Hanneke, Steve
    Yang, Liu
    THEORETICAL COMPUTER SCIENCE, 2018, 745 : 23 - 35
  • [8] Parameterized Property Testing of Functions
    Pallavoor, Ramesh Krishnan S.
    Raskhodnikova, Sofya
    Varma, Andnithin
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2018, 9 (04)
  • [9] Optimal Distribution-Free Sample-Based Testing of Subsequence-Freeness with One-Sided Error
    Ron, Dana
    Rosin, Asaf
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2022, 14 (01)
  • [10] Testing Noisy Linear Functions for Sparsity
    Chen, Xue
    De, Anindya
    Servedio, Rocco A.
    PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 610 - 623