One-component inner functions

被引:0
作者
Cima J. [1 ]
Mortini R. [2 ]
机构
[1] Department of Mathematics, UNC, Chapel Hill, NC
[2] Département de Mathématiques et Institut Élie Cartan de Lorraine, Université de Lorraine, UMR 7502, Ile du Saulcy, Metz
关键词
Connected components; Inner functions; Interpolating Blaschke products; Level sets;
D O I
10.1186/s40627-016-0008-8
中图分类号
学科分类号
摘要
We explicitly unveil several classes of inner functions u in H∞ with the property that there is η∈] 0 , 1 [such that the level set Ω u(η) : = { z∈ D: | u(z) | < η} is connected. These so-called one-component inner functions play an important role in operator theory. © 2017, The Author(s).
引用
收藏
相关论文
共 28 条
  • [1] Aleksandrov A.B., On embedding theorems for coinvariant subspaces of the shift operator, J. Math. Sci, 110, pp. 2907-2929, (2002)
  • [2] Aleman A., Lyubarskii Y., Malinnikova E., Perfekt K.-M., Trace ideal criteria for embeddings and composition operators on model spaces, J. Funct. Anal., 270, pp. 861-883, (2016)
  • [3] Baranov A., Bessonov R., Kapustin V., Symbols of truncated toeplitz operators, J. Funct. Anal., 261, pp. 3437-3456, (2011)
  • [4] Belna C.L., Obaid S.A., Rung D.C., Geometric conditions for interpolation, Proc. Am. Math. Soc., 88, pp. 469-475, (1983)
  • [5] Berman R., The level sets of the moduli of functions of bounded characteristic, Trans. Am. Math. Soc., 281, pp. 725-744, (1984)
  • [6] Berman R., Cohn W.S., Phragmén-Lindelöf theorems for subharmonic functions on the unit disk, Math. Scand., 62, pp. 269-293, (1988)
  • [7] Bessonov R.V., Fredholmness and compactness of truncated Toeplitz and Hankel operators, Integral. Equ. Oper. Theory, 82, pp. 451-467, (2015)
  • [8] Cima J., Wogen W., Isometric equivalence of isometries on H<sup>p</sup>, Proc. Am. Math. Soc., 144, pp. 4887-4898, (2016)
  • [9] Collingwood E., Lohwater A., Theory of cluster sets, (1966)
  • [10] Cohn B., Carleson measures for functions orthogonal to invariant subspaces, Pac. J. Math., 103, pp. 347-364, (1982)