Structure of outer membrane protein G in lipid bilayers

被引:0
作者
Joren S. Retel
Andrew J. Nieuwkoop
Matthias Hiller
Victoria A. Higman
Emeline Barbet-Massin
Jan Stanek
Loren B. Andreas
W. Trent Franks
Barth-Jan van Rossum
Kutti R. Vinothkumar
Lieselotte Handel
Gregorio Giuseppe de Palma
Benjamin Bardiaux
Guido Pintacuda
Lyndon Emsley
Werner Kühlbrandt
Hartmut Oschkinat
机构
[1] Leibniz-Institut für Molekulare Pharmakologie,Centre de RMN à Très Hauts Champs, Institute des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1)
[2] Université de Lyon,Unité de Bioinformatique Structurale, CNRS UMR 3528
[3] Max-Planck-Institut für Biophysik,Institut des Sciences et Ingénierie Chimiques
[4] Institut Pasteur,undefined
[5] Ecole Polytechnique Fédérale de Lausanne,undefined
来源
Nature Communications | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
β-barrel proteins mediate nutrient uptake in bacteria and serve vital functions in cell signaling and adhesion. For the 14-strand outer membrane protein G of Escherichia coli, opening and closing is pH-dependent. Different roles of the extracellular loops in this process were proposed, and X-ray and solution NMR studies were divergent. Here, we report the structure of outer membrane protein G investigated in bilayers of E. coli lipid extracts by magic-angle-spinning NMR. In total, 1847 inter-residue 1H–1H and 13C–13C distance restraints, 256 torsion angles, but no hydrogen bond restraints are used to calculate the structure. The length of β-strands is found to vary beyond the membrane boundary, with strands 6–8 being the longest and the extracellular loops 3 and 4 well ordered. The site of barrel closure at strands 1 and 14 is more disordered than most remaining strands, with the flexibility decreasing toward loops 3 and 4. Loop 4 presents a well-defined helix.
引用
收藏
相关论文
共 116 条
[11]  
Bayley H(2013)Toward genomic identification of beta-barrel membrane proteins: composition and architecture of known structures J. Biomol. NMR 56 379-386
[12]  
Liang B(2014)Structure-based engineering of a minimal porin reveals loop-independent channel closure J. Am. Chem. Soc. 136 12489-12497
[13]  
Tamm LK(1999)Out-and-back 13C-13C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS J. Biomol. NMR 14 71-74
[14]  
Subbarao GV(1988)Rapid proton-detected NMR assignment for proteins with fast magic angle spinning Prog. Nucl. Mag. Res. Spectrosc. 20 207-255
[15]  
van den Berg B(2009)Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations J. Biomol. NMR 44 245-260
[16]  
Yildiz O(2008)Isotope effects in nuclear shielding J. Am. Chem. Soc. 130 408-409
[17]  
Vinothkumar KR(1999)Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labeled proteins J. Magn. Reson. 139 389-401
[18]  
Goswami P(1996)[2,3-(13)C]-labeling of aromatic residues--getting a head start in the magic-angle-spinning NMR assignment of membrane proteins J. Am. Chem. Soc. 118 9255-9264
[19]  
Kuhlbrandt W(2012)Determination of multiple ***ϕ***-torsion angles in proteins by selective and extensive (13)C labeling and two-dimensional solid-state NMR J. Biomol. NMR 54 181-191
[20]  
Wimley WC(1996)Dynamical mapping of J. Mol. Biol. 264 1101-1116