Rigidity of the Holomorphic Automorphism of the Generalized Fock-Bargmann-Hartogs Domains

被引:0
|
作者
Ting Guo
Zhiming Feng
Enchao Bi
机构
[1] Qingdao University,School of Mathematics and Statistics
[2] Leshan Normal University,School of Mathematical and Information Sciences
来源
Czechoslovak Mathematical Journal | 2021年 / 71卷
关键词
generalized Fock-Bargmann-Hartogs domain; holomorphic automorphism group; 32H35;
D O I
暂无
中图分类号
学科分类号
摘要
We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain Dn,mp(μ). The generalized Fock-Bargmann-Hartogs domain is defined by inequality eμ‖z‖2∑j=1m|ωj|2p<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e^{\mu {{\left\| z \right\|}^2}}}\sum\limits_{j = 1}^m {{{\left| {{\omega _j}} \right|}^{2p}} < 1} $$\end{document}, where (z, ω) ∈ ℂn × ℂm. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain Dn,m/p(μ) becomes a holomorphic automorphism if and only if it keeps the function ∑j=1m|ωj|2peμ‖z‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{j = 1}^m {{{\left| {{\omega _j}} \right|}^{2p}}{e^{\mu {{\left\| z \right\|}^2}}}} $$\end{document} invariant.
引用
收藏
页码:373 / 386
页数:13
相关论文
共 10 条
  • [1] Rigidity of the Holomorphic Automorphism of the Generalized Fock-Bargmann-Hartogs Domains
    Guo, Ting
    Feng, Zhiming
    Bi, Enchao
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (02) : 373 - 386
  • [2] The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains
    Hyeseon Kim
    Atsushi Yamamori
    Czechoslovak Mathematical Journal, 2018, 68 : 611 - 631
  • [3] The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains
    Kim, Hyeseon
    Yamamori, Atsushi
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (03) : 611 - 631
  • [4] Holomorphic Automorphism Groups of (m,1)-Circular Domains
    Shuxia Feng
    Hongjun Li
    Chunhui Qiu
    The Journal of Geometric Analysis, 2020, 30 : 3035 - 3063
  • [5] Holomorphic Automorphism Groups of (m,1)-Circular Domains
    Feng, Shuxia
    Li, Hongjun
    Qiu, Chunhui
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 3035 - 3063
  • [6] Rigidity of automorphism groups of invariant domains in homogeneous Stein spaces
    Deng, F.
    Zhou, X. Y.
    IZVESTIYA MATHEMATICS, 2014, 78 (01) : 34 - 58
  • [7] RIGIDITY OF PROPER HOLOMORPHIC SELF-MAPPINGS OF SOME UNBOUNDED WEAKLY PSEUDOCONVEX HARTOGS DOMAIN
    Bi, Enchao
    Su, Guicong
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (01) : 31 - 42
  • [8] Explicit formula of holomorphic automorphism group on complex homogeneous bounded domains
    Xu Yichao
    Chen Minru
    Ma Songya
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (10): : 1392 - 1404
  • [9] Explicit formula of holomorphic automorphism group on complex homogeneous bounded domains
    XU Yichao
    College of Mathematics and Information Sciences
    Science in China(Series A:Mathematics), 2006, (10) : 1392 - 1404
  • [10] Explicit formula of holomorphic automorphism group on complex homogeneous bounded domains
    Yichao Xu
    Minru Chen
    Songya Ma
    Science in China Series A: Mathematics, 2006, 49 : 1392 - 1404