Forecasting of Multi-Step Ahead Reference Evapotranspiration Using Wavelet- Gaussian Process Regression Model

被引:0
|
作者
Masoud Karbasi
机构
[1] University of Zanjan,Water Engineering Department, Faculty of Agriculture
来源
Water Resources Management | 2018年 / 32卷
关键词
Reference crop evapotranspiration; Forecasting; Time series; Wavelet; Gaussian Process regression;
D O I
暂无
中图分类号
学科分类号
摘要
Evapotranspiration is one of the most important components in the optimization of water use in agriculture and water resources management. In recent years, artificial intelligence methods and wavelet based hybrid model have been used for forecasting of hydrological parameters. In present study the application of the Gaussian Process Regression (GPR) and Wavelet-GPR models to forecast multi step ahead daily (1–30 days ahead) reference evapotranspiration at the synoptic station of Zanjan (Iran) were investigated. For this purpose a 10-year statistical period (2000–2009) was considered, 7 years (2000–2006) for training and the final three years (2007–2009) for testing the various models. Various combinations of input data (various lag times) and different kinds of mother wavelets were evaluated. Results showed that, compared to the GPR model, the hybrid model Wavelet-GPR had greater ability and accuracy in forecasting of daily evapotranspiration. Moreover, the use of yearly lag times in the GPR and wavelet-GPR model increased its accuracy. Investigation of various kinds of mother wavelets also indicated that the Meyer wavelet was the most suitable mother wavelet for forecasting of daily reference evapotranspiration. The results showed that by increasing the forecasting time period from 1 to 30 days, the accuracy of the models is reduced (RMSE = 0.068 mm/day for one day ahead and RMSE = 0.816 mm/day for 30 days ahead). Application of the proposed model to summer season showed that the performance of the model at summer season is better than its performance throughout the year.
引用
收藏
页码:1035 / 1052
页数:17
相关论文
共 50 条
  • [21] Adaptive Conformal Inference for Multi-Step Ahead Time-Series Forecasting Online
    Szabadvary, Johan Hallberg
    13TH SYMPOSIUM ON CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, 2024, 230 : 250 - 263
  • [22] The study on forecasting the gravelly soil liquefaction using Gaussian process regression model
    Wang, Fei
    Su, Jingyu
    Wang, Zhitao
    Journal of Computational Information Systems, 2015, 11 (21): : 7883 - 7891
  • [23] Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes
    Papacharalampous, Georgia
    Tyralis, Hristos
    Koutsoyiannis, Demetris
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (02) : 481 - 514
  • [24] Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes
    Georgia Papacharalampous
    Hristos Tyralis
    Demetris Koutsoyiannis
    Stochastic Environmental Research and Risk Assessment, 2019, 33 : 481 - 514
  • [25] Monthly streamflow forecasting using Gaussian Process Regression
    Sun, Alexander Y.
    Wang, Dingbao
    Xu, Xianli
    JOURNAL OF HYDROLOGY, 2014, 511 : 72 - 81
  • [26] Multi-step ahead meningitis case forecasting based on decomposition and multi-objective optimization methods
    Dal Molin Ribeiro, Matheus Henrique
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 111
  • [27] A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection
    Jiang, Ping
    Liu, Feng
    Song, Yiliao
    ENERGIES, 2016, 9 (08):
  • [28] Multi-step ahead forecasting of daily global and direct solar radiation: A review and case study of Ghardaia region
    Guermoui, Mawloud
    Melgani, Farid
    Danilo, Celine
    JOURNAL OF CLEANER PRODUCTION, 2018, 201 : 716 - 734
  • [29] Multi-step ahead forecasts for electricity prices using NARX: A new approach, a critical analysis of one-step ahead forecasts
    Andalib, Arash
    Atry, Farid
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (03) : 739 - 747
  • [30] A New Hybrid ARAR and Neural Network Model for Multi-Step Ahead Wind Speed Forecasting in Three Regions of Pakistan
    Shahzad, Mirza Naveed
    Kanwal, Saiqa
    Hussanan, Abid
    IEEE ACCESS, 2020, 8 : 199382 - 199392