Deformations of the infinite-dimensional Lie algebra L3

被引:0
|
作者
Yu. Yu. Kochetkov
机构
[1] Moscow Institute for Electronics and Mathematics,
关键词
infinite-dimensional graded Lie algebra; homology of Lie algebra;
D O I
暂无
中图分类号
学科分类号
摘要
For the nilpotent infinite-dimensional Lie algebra L3, we compute the second cohomology group H2(L3, L3) with coefficients in the adjoint module. Nontrivial cocycles are found in closed form, and Massey powers are computed for them.
引用
收藏
页码:228 / 233
页数:5
相关论文
共 50 条
  • [21] Infinite-dimensional 3-algebra and integrable system
    Chen, Min-Ru
    Wang, Shi-Kun
    Wu, Ke
    Zhao, Wei-Zhong
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (12):
  • [22] TENSOR PRODUCT OF 1-PARTICLE REPRESENTATIONS OF AN INFINITE-DIMENSIONAL LIE ALGEBRA
    HAVLICEK, M
    VOTRUBA, J
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1967, 17 (10) : 809 - &
  • [23] Infinite-dimensional 3-algebra and integrable system
    Min-Ru Chen
    Shi-Kun Wang
    Ke Wu
    Wei-Zhong Zhao
    Journal of High Energy Physics, 2012
  • [24] Infinite-dimensional Hamiltonian Lie superalgebras
    MU Qiang1
    2School of Mathematics
    Science China(Mathematics), 2010, 53 (06) : 1625 - 1634
  • [25] Infinite-dimensional Hamiltonian Lie superalgebras
    Qiang Mu
    YongZheng Zhang
    Science China Mathematics, 2010, 53 : 1625 - 1634
  • [26] Infinite-Dimensional Modular Lie Superalgebra Ω
    Xu, Xiaoning
    Mu, Bing
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [27] INFINITE-DIMENSIONAL LIE-ALGEBRAS
    KAPLANSKY, I
    SCRIPTA MATHEMATICA, 1973, 29 (3-4): : 237 - 241
  • [28] Infinite-dimensional Hamiltonian Lie superalgebras
    Mu Qiang
    Zhang YongZheng
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (06) : 1625 - 1634
  • [29] Infinite-dimensional super Lie groups
    Cook, James
    Fulp, Ronald
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (05) : 463 - 482
  • [30] NORMAL-FORM, SYMMETRY AND INFINITE-DIMENSIONAL LIE-ALGEBRA FOR SYSTEM OF ODES
    KODAMA, Y
    PHYSICS LETTERS A, 1994, 191 (3-4) : 223 - 228