Adsorption and heterogeneous Fenton catalytic performance for magnetic Fe3O4/reduced graphene oxide aerogel

被引:0
|
作者
Fengling Zhang
Xiangxin Xue
Xiaowei Huang
He Yang
机构
[1] Northeastern University,School of Metallurgy
[2] General Research Institute for Nonferrous Metals and Grirem Advanced Materials Co.,National Engineering Research Center for Rare Earth Materials
[3] Ltd.,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Heterogeneous Fenton system has been widely used in water treatment because of its effective degradability in a wide range of pH. A two-step hydrothermal method for the synthesis of Fe3O4/reduced graphene oxide (RGO) aerogel was designed as an efficient and recyclable heterogeneous Fenton catalyst for degradation of methylene blue (MB). Firstly, the Fe3O4 colloidal solution was synthesized by hydrothermal progress. Secondly, graphene oxide hydrogels were formed by the self-assembling and reduced to graphene during the hydrothermal reaction. Meanwhile, zero-dimensional Fe3O4 nanoparticles were anchored onto the graphene oxide through the colloidal coagulation effect. The obtained samples were characterized by XRD, SEM, TEM, BET, Zeta, XPS, Raman, TG, and VSM. Adsorption isotherm and kinetics of MB onto Fe3O4/RGO composites revealed that the maximum adsorption capacity was 163.83 mg/g, and the adsorption process confirmed to the pseudo-second-order model. The determinants of heterogeneous Fenton system including oxidant concentration, initial pH, and reaction mechanism were investigated. The studies indicated that MB degradation efficiencies increased with the initial pH increasing (pH 3–10), showing a complete degradation in alkaline condition within 60 min. It is due to that catalytic reaction mainly occurs on the solid–liquid interface, as pH values increase, the electrostatic attraction between the cationic MB molecules and the surface of Fe3O4/RGO increases, the enhancement of adsorptivity is helpful to improve catalytic activity. The catalyst can be easily recovered by an applied magnetic field and exhibited excellent stability after five degradation cycles.
引用
收藏
页码:15695 / 15708
页数:13
相关论文
共 50 条
  • [21] Preparation and characterisation of magnetic Fe3O4/graphene oxide nanocomposites
    Cao, L. L.
    Yin, S. M.
    Liang, Y. B.
    Zhu, J. M.
    Fang, C.
    Chen, Z. C.
    MATERIALS RESEARCH INNOVATIONS, 2015, 19 : S364 - S368
  • [22] Decoration of Fe3O4 magnetic nanoparticles on graphene oxide nanosheets
    Bagherzadeh, M.
    Amrollahi, M. A.
    Makizadeh, S.
    RSC ADVANCES, 2015, 5 (128): : 105499 - 105506
  • [23] Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition
    Huang, Ruixiong
    Fang, Zhanqiang
    Yan, Xiaomin
    Cheng, Wen
    CHEMICAL ENGINEERING JOURNAL, 2012, 197 : 242 - 249
  • [24] Preparition and multiple-dye adsorption of magnetic chitosan/Fe3O4/graphene oxide adsorbent
    Gao Ming
    Zhang Tong-Qing
    Li Jian-Jun
    Hu Jia-Qi
    Jin Ming-Yan
    Zhao Yan
    Wang Hong-Yang
    Xue Chang-Guo
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2023, 39 (04) : 723 - 734
  • [25] Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors
    Zhu, Shenmin
    Guo, Jingjing
    Dong, Junping
    Cui, Zhaowen
    Lu, Tao
    Zhu, Chenglin
    Zhang, Di
    Ma, Jun
    ULTRASONICS SONOCHEMISTRY, 2013, 20 (03) : 872 - 880
  • [26] Green and facile decoration of Fe3O4 nanoparticles on reduced graphene oxide
    Krishna, Rahul
    Dias, Catarina
    Ventura, Joao
    Titus, Elby
    MATERIALS TODAY-PROCEEDINGS, 2016, 3 (08) : 2807 - 2813
  • [27] Fe3O4 nanoparticle/graphene aerogel composite with enhanced lithium storage performance
    Wang, Yu
    Jin, Yuhong
    Zhao, Chenchen
    Pan, Erzhuang
    Jia, Mengqiu
    APPLIED SURFACE SCIENCE, 2018, 458 : 1035 - 1042
  • [28] Enhancing electrochemical performance of Fe3O4/graphene hybrid aerogel with hydrophilic polymer
    Zhan, Yanhu (zhanyanhu@163.com), 1600, John Wiley and Sons Inc (134):
  • [29] Facile synthesis of reduced graphene oxide/Fe3O4 nanocomposite film
    Ma, Cunqing
    Yang, Kaiyu
    Wang, Lili
    Wang, Xin
    JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, 2017, 15 : S1 - S6
  • [30] Preparation and Characterization of Reduced Graphene Oxide–Fe3O4 Nanocomposites in Polyacrylamide
    K. H. Didehban
    S. A. Mirshokraie
    F. Mohammadi
    J. Azimvand
    Russian Journal of Physical Chemistry A, 2018, 92 : 2270 - 2276