More bounds for the Grundy number of graphs

被引:0
|
作者
Zixing Tang
Baoyindureng Wu
Lin Hu
Manoucheher Zaker
机构
[1] Xinjiang University,College of Mathematics and System Sciences
[2] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2017年 / 33卷
关键词
Grundy number; Chromatic number; Clique number; Coloring number; Randić index;
D O I
暂无
中图分类号
学科分类号
摘要
A coloring of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is a partition {V1,V2,…,Vk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{V_1, V_2, \ldots , V_k\}$$\end{document} of V into independent sets or color classes. A vertex v∈Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V_i$$\end{document} is a Grundy vertex if it is adjacent to at least one vertex in each color class Vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_j$$\end{document} for every j<i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j<i$$\end{document}. A coloring is a Grundy coloring if every vertex is a Grundy vertex, and the Grundy number Γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (G)$$\end{document} of a graph G is the maximum number of colors in a Grundy coloring. We provide two new upper bounds on Grundy number of a graph and a stronger version of the well-known Nordhaus-Gaddum theorem. In addition, we give a new characterization for a {P4,C4}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_{4}, C_4\}$$\end{document}-free graph by supporting a conjecture of Zaker, which says that Γ(G)≥δ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (G)\ge \delta (G)+1$$\end{document} for any C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document}-free graph G.
引用
收藏
页码:580 / 589
页数:9
相关论文
共 50 条
  • [31] Grundy Coloring and Friends, Half-Graphs, Bicliques
    Aboulker, Pierre
    Bonnet, Edouard
    Kim, Eun Jung
    Sikora, Florian
    ALGORITHMICA, 2023, 85 (01) : 1 - 28
  • [32] Grundy Coloring & Friends, Half-Graphs, Bicliques
    Aboulker, Pierre
    Bonnet, Edouard
    Kim, Eun Jung
    Sikora, Florian
    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [33] Grundy coloring in some subclasses of bipartite graphs and their complements
    Verma, Shaily
    Panda, B. S.
    INFORMATION PROCESSING LETTERS, 2020, 163
  • [34] Upper bounds on the chromatic number of triangle-free graphs with a forbidden subtree
    Xiao Wang
    Baoyindureng Wu
    Journal of Combinatorial Optimization, 2017, 33 : 28 - 34
  • [35] Bounds on the domination number and the metric dimension of co-normal product of graphs
    Javaid, Imran
    Rehman, Shahid ur
    Imran, Muhammad
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [36] Upper bounds on the chromatic number of triangle-free graphs with a forbidden subtree
    Wang, Xiao
    Wu, Baoyindureng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (01) : 28 - 34
  • [37] Upper bounds of the energy of triangle-free graphs in terms of matching number
    Tian, Fenglei
    Wong, Dein
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (01): : 20 - 28
  • [38] Bounds for eccentricity-based parameters of graphs
    Tang, Yunfang
    Qi, Xuli
    West, Douglas B.
    DISCRETE APPLIED MATHEMATICS, 2025, 362 : 109 - 123
  • [39] Chromatic number and subtrees of graphs
    Baogang Xu
    Yingli Zhang
    Frontiers of Mathematics in China, 2017, 12 : 441 - 457
  • [40] Chromatic number and subtrees of graphs
    Xu, Baogang
    Zhang, Yingli
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (02) : 441 - 457