Gravitational Collapse and Ergodicity in Confined Gravitational Systems

被引:0
作者
Lj. Milanović
H. A. Posch
W. Thirring
机构
[1] Universität Wien,Institut für Experimentalphysik
[2] Universität Wien,Institut für Theoretische Physik
来源
Journal of Statistical Physics | 2006年 / 124卷
关键词
Lyapunov Exponent; Gravitational Collapse; Maximum Lyapunov Exponent; Random Initial Condition; Sheet Model;
D O I
暂无
中图分类号
学科分类号
摘要
The ergodic properties of many-body systems with repulsive-core interactions are the basis of classical statistical mechanics and are well established. This is not the case for systems of purely-attractive or gravitational particles. Here we consider two examples, (i) a family of one-dimensional systems with attractive power-law interactions, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x_i -x_j|^{\nu} \;, \; \nu > 0$$\end{document}, and (ii) a system of N gravitating particles confined to a finite compact domain. For (i) we deduce from the numerically-computed Lyapunov spectra that chaos, measured by the maximum Lyapunov exponent or by the Kolmogorov–Sinai entropy, increases linearly for positive and negative deviations of ν from the case of a non-chaotic harmonic chain (ν = 2). For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 < \nu \le 3$$\end{document} there is numerical evidence for two additional hitherto unknown phase-space constraints. For the theoretical interpretation of model (ii) we assume ergodicity and show that for a small-enough system the reduction of the allowed phase space due to any other conserved quantity, in addition to the total energy, renders the system asymptotically stable. Without this additional dynamical constraint the particle collapse would continue forever. These predictions are supported by computer simulations.
引用
收藏
页码:843 / 858
页数:15
相关论文
共 50 条
  • [31] Gravitational collapse in spatially isotropic coordinates
    Megandhren Govender
    Robert Bogadi
    Ranjan Sharma
    Shyam Das
    Astrophysics and Space Science, 2016, 361
  • [32] Singularities in Gravitational Collapse with Radial Pressure
    Sérgio M. C. V. Gonçalves
    Sanjay Jhingan
    General Relativity and Gravitation, 2001, 33 : 2125 - 2149
  • [33] Gravitational collapse in higher curvature theory
    Nozawa, Masato
    Maeda, Hideki
    CENTURY OF RELATIVITY PHYSICS, 2006, 841 : 546 - +
  • [34] Gravitational collapse of null fluid on the brane
    Dadhich, N
    Ghosh, SG
    PHYSICS LETTERS B, 2001, 518 (1-2) : 1 - 7
  • [35] Gravitational collapse with decaying vacuum energy
    Beesham, A.
    PRAMANA-JOURNAL OF PHYSICS, 2011, 77 (03): : 429 - 432
  • [36] Dissipative gravitational collapse of an (an)isotropic star
    Das, Shyam
    Sharma, Ranjan
    Paul, Bikash Chandra
    Deb, Rumi
    ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (03) : 1 - 5
  • [37] Gravitational collapse without black holes
    Marshall, Trevor W.
    ASTROPHYSICS AND SPACE SCIENCE, 2012, 342 (02) : 329 - 332
  • [38] A class of conformally flat solutions for systems undergoing radiative gravitational collapse
    Sharma, Ranjan
    Das, Shyam
    Tikekar, Ramesh
    GENERAL RELATIVITY AND GRAVITATION, 2015, 47 (03) : 1 - 14
  • [39] Radiating gravitational collapse with shear revisited
    Chan, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2003, 12 (06): : 1131 - 1155
  • [40] Gravitational collapse in gravity's rainbow
    Ali, Ahmed Farag
    Faizal, Mir
    Majumder, Barun
    Mistry, Ravi
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (09)