Gravitational Collapse and Ergodicity in Confined Gravitational Systems

被引:0
作者
Lj. Milanović
H. A. Posch
W. Thirring
机构
[1] Universität Wien,Institut für Experimentalphysik
[2] Universität Wien,Institut für Theoretische Physik
来源
Journal of Statistical Physics | 2006年 / 124卷
关键词
Lyapunov Exponent; Gravitational Collapse; Maximum Lyapunov Exponent; Random Initial Condition; Sheet Model;
D O I
暂无
中图分类号
学科分类号
摘要
The ergodic properties of many-body systems with repulsive-core interactions are the basis of classical statistical mechanics and are well established. This is not the case for systems of purely-attractive or gravitational particles. Here we consider two examples, (i) a family of one-dimensional systems with attractive power-law interactions, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x_i -x_j|^{\nu} \;, \; \nu > 0$$\end{document}, and (ii) a system of N gravitating particles confined to a finite compact domain. For (i) we deduce from the numerically-computed Lyapunov spectra that chaos, measured by the maximum Lyapunov exponent or by the Kolmogorov–Sinai entropy, increases linearly for positive and negative deviations of ν from the case of a non-chaotic harmonic chain (ν = 2). For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 < \nu \le 3$$\end{document} there is numerical evidence for two additional hitherto unknown phase-space constraints. For the theoretical interpretation of model (ii) we assume ergodicity and show that for a small-enough system the reduction of the allowed phase space due to any other conserved quantity, in addition to the total energy, renders the system asymptotically stable. Without this additional dynamical constraint the particle collapse would continue forever. These predictions are supported by computer simulations.
引用
收藏
页码:843 / 858
页数:15
相关论文
共 50 条
  • [21] Plane symmetric gravitational collapse
    Sharif, M.
    Ahmad, Zahid
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (01): : 181 - 188
  • [22] Gravitational collapse of Vaidya spacetime
    Vertogradov, Vitalii
    PROCEEDINGS OF THE 9TH ALEXANDER FRIEDMANN INTERNATIONAL SEMINAR ON GRAVITATION AND COSMOLOGY AND 3RD SATELLITE SYMPOSIUM ON THE CASIMIR EFFECT, 2016, 41
  • [23] Gravitational collapse: The story so far
    Joshi, PS
    PRAMANA-JOURNAL OF PHYSICS, 2000, 55 (04): : 529 - 544
  • [24] Gravitational Collapse in Quantum Einstein Gravity
    Bonanno, Alfio
    Koch, Benjamin
    Platania, Alessia
    FOUNDATIONS OF PHYSICS, 2018, 48 (10) : 1393 - 1406
  • [25] Gravitational Collapse and the Vlasov–Poisson System
    Gerhard Rein
    Lukas Taegert
    Annales Henri Poincaré, 2016, 17 : 1415 - 1427
  • [26] On the final state of spherical gravitational collapse
    Mitra, A
    FOUNDATIONS OF PHYSICS LETTERS, 2002, 15 (05) : 439 - 471
  • [27] A class of conformally flat solutions for systems undergoing radiative gravitational collapse
    Ranjan Sharma
    Shyam Das
    Ramesh Tikekar
    General Relativity and Gravitation, 2015, 47
  • [28] Arrow of time and gravitational entropy in collapse
    Chakraborty, Samarjit
    Maharaj, Sunil D.
    Guha, Sarbari
    Goswami, Rituparno
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (12)
  • [29] Dissipative gravitational collapse of an (an)isotropic star
    Shyam Das
    Ranjan Sharma
    Bikash Chandra Paul
    Rumi Deb
    Astrophysics and Space Science, 2016, 361
  • [30] COLLECTIVE BARYON DECAY AND GRAVITATIONAL COLLAPSE
    Chapline, George
    Barbieri, James
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2014, 23 (03):