Gravitational Collapse and Ergodicity in Confined Gravitational Systems

被引:0
|
作者
Lj. Milanović
H. A. Posch
W. Thirring
机构
[1] Universität Wien,Institut für Experimentalphysik
[2] Universität Wien,Institut für Theoretische Physik
来源
关键词
Lyapunov Exponent; Gravitational Collapse; Maximum Lyapunov Exponent; Random Initial Condition; Sheet Model;
D O I
暂无
中图分类号
学科分类号
摘要
The ergodic properties of many-body systems with repulsive-core interactions are the basis of classical statistical mechanics and are well established. This is not the case for systems of purely-attractive or gravitational particles. Here we consider two examples, (i) a family of one-dimensional systems with attractive power-law interactions, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x_i -x_j|^{\nu} \;, \; \nu > 0$$\end{document}, and (ii) a system of N gravitating particles confined to a finite compact domain. For (i) we deduce from the numerically-computed Lyapunov spectra that chaos, measured by the maximum Lyapunov exponent or by the Kolmogorov–Sinai entropy, increases linearly for positive and negative deviations of ν from the case of a non-chaotic harmonic chain (ν = 2). For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 < \nu \le 3$$\end{document} there is numerical evidence for two additional hitherto unknown phase-space constraints. For the theoretical interpretation of model (ii) we assume ergodicity and show that for a small-enough system the reduction of the allowed phase space due to any other conserved quantity, in addition to the total energy, renders the system asymptotically stable. Without this additional dynamical constraint the particle collapse would continue forever. These predictions are supported by computer simulations.
引用
收藏
页码:843 / 858
页数:15
相关论文
共 50 条
  • [21] Gravitational Collapse with Heat Flux and Gravitational Waves
    Ahmad, Zahid
    Ahmed, Qazi Zahoor
    Awan, Abdul Sami
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (10) : 3598 - 3603
  • [22] ON PROBLEM OF GRAVITATIONAL COLLAPSE
    NARIAI, H
    TOMITA, K
    PROGRESS OF THEORETICAL PHYSICS, 1965, 34 (01): : 155 - &
  • [23] 'MEDITATION ON GRAVITATIONAL COLLAPSE'
    MALTMAN, K
    ANTIGONISH REVIEW, 1979, (37): : 28 - 28
  • [24] GRAVITATIONAL COLLAPSE AND COSMOLOGY
    REES, MJ
    CONTEMPORARY PHYSICS, 1980, 21 (02) : 99 - 120
  • [25] Quantum gravitational collapse
    Vaz, C.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [26] CATASTROPHIC GRAVITATIONAL COLLAPSE
    MILLER, JC
    OBSERVATORY, 1976, 96 (1013): : 137 - 137
  • [27] Impossibility of gravitational collapse
    Logunov, A. A.
    Mestvirishvili, M. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 174 (02) : 253 - 262
  • [28] PREVENTION OF GRAVITATIONAL COLLAPSE
    MOFFAT, JW
    TAYLOR, JG
    PHYSICS LETTERS B, 1981, 99 (05) : 396 - 398
  • [29] NONADIABATIC GRAVITATIONAL COLLAPSE
    DEOLIVEIRA, AKG
    SANTOS, NO
    ASTROPHYSICAL JOURNAL, 1987, 312 (02): : 640 - 645
  • [30] GRAVITATIONAL COLLAPSE WITH ASYMMETRIES
    CRUZ, VDL
    CHASE, JE
    ISRAEL, W
    PHYSICAL REVIEW LETTERS, 1970, 24 (08) : 423 - &