Gravitational Collapse and Ergodicity in Confined Gravitational Systems

被引:0
|
作者
Lj. Milanović
H. A. Posch
W. Thirring
机构
[1] Universität Wien,Institut für Experimentalphysik
[2] Universität Wien,Institut für Theoretische Physik
来源
关键词
Lyapunov Exponent; Gravitational Collapse; Maximum Lyapunov Exponent; Random Initial Condition; Sheet Model;
D O I
暂无
中图分类号
学科分类号
摘要
The ergodic properties of many-body systems with repulsive-core interactions are the basis of classical statistical mechanics and are well established. This is not the case for systems of purely-attractive or gravitational particles. Here we consider two examples, (i) a family of one-dimensional systems with attractive power-law interactions, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x_i -x_j|^{\nu} \;, \; \nu > 0$$\end{document}, and (ii) a system of N gravitating particles confined to a finite compact domain. For (i) we deduce from the numerically-computed Lyapunov spectra that chaos, measured by the maximum Lyapunov exponent or by the Kolmogorov–Sinai entropy, increases linearly for positive and negative deviations of ν from the case of a non-chaotic harmonic chain (ν = 2). For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 < \nu \le 3$$\end{document} there is numerical evidence for two additional hitherto unknown phase-space constraints. For the theoretical interpretation of model (ii) we assume ergodicity and show that for a small-enough system the reduction of the allowed phase space due to any other conserved quantity, in addition to the total energy, renders the system asymptotically stable. Without this additional dynamical constraint the particle collapse would continue forever. These predictions are supported by computer simulations.
引用
收藏
页码:843 / 858
页数:15
相关论文
共 50 条
  • [1] Gravitational collapse and ergodicity in confined gravitational systems
    Milanovic, Lj.
    Posch, H. A.
    Thirring, W.
    JOURNAL OF STATISTICAL PHYSICS, 2006, 124 (2-4) : 843 - 858
  • [2] On the gravitational collapse of stellar systems
    Robert, R
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (12) : 3827 - 3840
  • [3] On the Critical Behavior of Gapped Gravitational Collapse in Confined Spacetime
    蔡荣根
    季力伟
    杨润秋
    Communications in Theoretical Physics, 2017, 68 (07) : 67 - 75
  • [4] On the Critical Behavior of Gapped Gravitational Collapse in Confined Spacetime
    Cai, Rong-Gen
    Ji, Li-Wei
    Yang, Run-Qiu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 68 (01) : 67 - 75
  • [5] Gravitational quantum collapse in dilute systems
    Laloe, Franck
    COMPTES RENDUS PHYSIQUE, 2022, 23 : 27 - 40
  • [6] Gravitational Waves from Gravitational Collapse
    Chris L. Fryer
    Kimberly C. B. New
    Living Reviews in Relativity, 2011, 14
  • [7] Gravitational Waves from Gravitational Collapse
    Chris L. Fryer
    Kimberly C. B. New
    Living Reviews in Relativity, 2003, 6 (1)
  • [8] Gravitational Waves from Gravitational Collapse
    Fryer, Chris L.
    New, Kimberly C. B.
    LIVING REVIEWS IN RELATIVITY, 2011, 14
  • [9] GRAVITATIONAL COLLAPSE
    THORNE, KS
    SCIENTIFIC AMERICAN, 1967, 217 (05) : 88 - &
  • [10] GRAVITATIONAL COLLAPSE
    BONDI, H
    NATURE, 1964, 202 (492) : 275 - &