\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetry-breaking induced suppression of tunneling in a driven non-Hermitian two-level system

被引:1
作者
Xiao Lian
Honghua Zhong
Qiongtao Xie
Xiaoqing Zhou
Yunwen Wu
Wenhu Liao
机构
[1] Jishou University,Department of Physics
[2] Sun Yat-Sen University,State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering
[3] Hainan Normal University,School of Physics and Electronic Engineering
关键词
Quantum Optics;
D O I
10.1140/epjd/e2014-50188-1
中图分类号
学科分类号
摘要
We investigate the effect of parity-time (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}) symmetry on quantum tunneling dynamics for a periodically driven \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetric non-Hermitian two-level system. We find that the quantum tunneling between two levels can be suppressed in a wide range of parameters in comparison with the Hermitian case, which is caused by the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetry-breaking. By employing the high-frequency Floquet approach, the parametric dependence of the spontaneous \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetry-breaking transition is analytically and numerically explored. It is revealed that we can manipulate the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document} symmetry by tuning the driving amplitude and frequency. Our results provide a promising approach for manipulating the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document} symmetry by applying a periodic driving field.
引用
收藏
相关论文
共 155 条
[1]  
Bender C.M.(1998)undefined Phys. Rev. Lett. 80 5243-undefined
[2]  
Boettcher S.(2009)undefined Phys. Rev. Lett. 103 123601-undefined
[3]  
Longhi S.(2010)undefined Opt. Lett. 35 2976-undefined
[4]  
Dmitriev S.V.(2008)undefined Phys. Rev. Lett. 100 103904-undefined
[5]  
Sukhorukov A.A.(2008)undefined J. Phys. A 41 255206-undefined
[6]  
Kivshar Y.S.(2009)undefined Phys. Rev. A 80 052107-undefined
[7]  
Makris K.G.(2010)undefined Phys. Rev. A 81 032109-undefined
[8]  
El-Ganainy R.(2012)undefined Phys. Rev. A 85 012106-undefined
[9]  
Christodoulides D.N.(2011)undefined Int. J. Theor. Phys. 50 1019-undefined
[10]  
Musslimani Z.H.(2011)undefined Phys. Rev. A 84 013410-undefined