The effect of conductive baffles on natural convection in a power-law fluid-filled square cavity

被引:0
|
作者
Afrasiab Raisi
机构
[1] Shahrekord University,Engineering Faculty
关键词
Natural convection; Cavity; Power-law; Heat source; Conductive baffles;
D O I
暂无
中图分类号
学科分类号
摘要
This research involves the numerical study of the conjugate natural convection of a power-law fluid in a two-dimensional square cavity with a pair of conducting baffles. The lower wall of the cavity contains a heat source with constant heat flux, while a pair of conductive baffles is embedded on its upper wall. The left and right side walls and some parts of the lower wall of the cavity are thermally insulated and its upper wall is kept at a low temperature. The governing equations along with the corresponding boundary conditions are solved using the numerical finite difference method based on the control volume formulation and SIMPLE algorithm. The effects of pertinent parameters on flow and temperature fields and heat transfer rate are investigated. From the results of the numerical solution, increasing the Rayleigh number and baffles thermal conductivity enhance the thermal performance of the cavity. So that for Ra=106,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Ra = 10^{6} , $$\end{document} with an increase in the thermal conductivity ratio from 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1 $$\end{document} to 100,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 100, $$\end{document} the average Nusselt number increases by about 14% for both cases n=0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n = 0.6 $$\end{document} and n=1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n = 1.2 $$\end{document}. As well as a decrease in power-law index, except in low Rayleigh numbers, increases the heat transfer rate. Based on the results, the increase of the average Nusselt number is about 283% for a power-law index reduction in the range of 0.6≤n≤1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0.6 \le n \le 1.2 $$\end{document} at Ra=106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Ra = 10^{6} $$\end{document}. Also, an increase of the length of the baffles deteriorates the thermal performance of the cavity at high Rayleigh numbers, while enhances it at low Rayleigh numbers.
引用
收藏
相关论文
共 50 条
  • [31] Comparative study of forced convection of a power-law fluid in a channel with a built-in square cylinder
    Mohebbi, R.
    Nazari, M.
    Kayhani, M. H.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2016, 57 (01) : 55 - 68
  • [32] Inertial swimming in a channel filled with a power-law fluid
    Ouyang, Zhenyu
    Phan-Thien, Nhan
    PHYSICS OF FLUIDS, 2021, 33 (11)
  • [33] Numerical simulation of natural convection heat transfer from a heated square cylinder in a square cavity filled with micropolar fluid
    Sivarami Reddy, C.
    Ramachandra Prasad, V.
    Jayalakshmi, K.
    HEAT TRANSFER, 2021, 50 (06) : 5267 - 5285
  • [34] Low turbulence natural convection in an air cavity filled square cavity - Part I: the thermal and fluid flow fields
    Tian, YS
    Karayiannis, TG
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2000, 43 (06) : 849 - 866
  • [35] Finite Volume Simulation of Natural Convection for Power-Law Fluids with Temperature-Dependent Viscosity in a Square Cavity with a Localized Heat Source
    Daghab, Hamza
    Kaddiri, Mourad
    Raghay, Said
    Arroub, Ismail
    Lamsaadi, Mohamed
    Rayhane, Hassan
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2021, 39 (05) : 1405 - 1416
  • [36] LAMINAR NATURAL CONVECTION HEAT TRANSFER FROM VERTICAL PLATE TO POWER-LAW FLUID
    TIEN, C
    APPLIED SCIENTIFIC RESEARCH, 1967, 17 (03): : 233 - &
  • [37] LAMINAR NATURAL CONVECTION OF NON-NEWTONIAN POWER-LAW FLUID IN AN ECCENTRIC ANNULUS
    Benhizia, Oussama
    Bouzit, Mohamed
    Dellil, Ahmed Zineddine
    THERMAL SCIENCE, 2021, 25 (01): : 293 - 305
  • [38] Steady Natural Convection of Non-Newtonian Power-Law Fluid in a Trapezoidal Enclosure
    Sojoudi, Atta
    Saha, Suvash C.
    Gu, Y. T.
    Hossain, M. A.
    ADVANCES IN MECHANICAL ENGINEERING, 2013,
  • [39] Natural convection in a diagonally divided square cavity filled with a porous medium
    Varol, Yasin
    Oztop, Hakan F.
    Pop, Ioan
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2009, 48 (07) : 1405 - 1415
  • [40] Conjugate natural convection in air filled tube inserted a square cavity
    Oztop, Hakan F.
    Fu, Zaiguo
    Yu, Bo
    Wei, Jinjia
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2011, 38 (05) : 590 - 596