Carbon Dioxide and Water Vapor Continuum Absorption in the Infrared Spectral Region

被引:2
|
作者
Rodimova O.B. [1 ]
机构
[1] V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk
关键词
carbon dioxide; continuum absorption; spectral line wings;
D O I
10.1134/S1024856018060143
中图分类号
学科分类号
摘要
Н2О and СО2 continuum absorption within the IR absorption bands depends on the frequency boundaries within which the local line contribution is accounted for. Correlation between the maximal value of this boundary and the line shape at large frequency detuning is observed for the 4.3-, 2.7-, 1.4-, and 1.2-μm СО2 bands, as well as for rotational and 1400–1900-, 3500–3900-, and 5200–5500-cm−1 Н2О bands. The continuum absorption can be unambiguously determined from measurements in the band wings if one assumes that it is purely continual there. Within bands, the continuum absorption cannot be determined unambiguously and depends on the local line contribution boundary chosen. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:564 / 569
页数:5
相关论文
共 50 条
  • [21] Sensitivity of downward long-wave radiative fluxes to water vapor continuum absorption
    Firsov K.M.
    Chesnokova T.Y.
    Atmospheric and Oceanic Optics, 2010, 23 (6) : 462 - 468
  • [22] The water vapor self-continuum absorption at room temperature in the 1.25 μm window
    Koroleva, A. O.
    Kassi, S.
    Campargue, A.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 286
  • [23] Collision-Induced Dipole Moment and Millimeter and Submillimeter Continuum Absorption in Water Vapor
    M. Yu. Tretyakov
    A. A. Sysoev
    T. A. Odintsova
    A. A. Kyuberis
    Radiophysics and Quantum Electronics, 2015, 58 : 262 - 276
  • [24] Absorption Spectrum of Carbon Dioxide in the 4350–4550 cm–1 Region
    A. A. Marinina
    Yu. G. Borkov
    T. M. Petrova
    A. M. Solodov
    A. A. Solodov
    V. I. Perevalov
    Atmospheric and Oceanic Optics, 2022, 35 : 8 - 13
  • [25] Research and Analysis of Laser Absorption Spectrum of Water and Carbon Dioxide
    Zhuan, You
    Lu, Haocheng
    AGRO FOOD INDUSTRY HI-TECH, 2017, 28 (01): : 3229 - 3232
  • [26] The Atmospheric Water Vapor Content Effect on Carbon Dioxide and Methane Radiative Forcing in the Troposphere and Stratosphere
    Firsov, K. M.
    Chesnokova, T. Yu.
    Razmolov, A. A.
    ATMOSPHERIC AND OCEANIC OPTICS, 2024, 37 (05) : 689 - 697
  • [27] The vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of kerosene
    Jin-Hu Liang
    Su Wang
    Sheng-Tao Zhang
    Lian-Jie Yue
    Bing-Cheng Fan
    Xin-Yu Zhang
    Ji-Ping Cui
    Acta Mechanica Sinica, 2014, 30 : 485 - 494
  • [28] Propane burning in argon, carbon dioxide, and water vapor at increased pressure
    O. N. Fedyaeva
    D. O. Artamonov
    M. Ya. Sokol
    A. A. Vostrikov
    Thermophysics and Aeromechanics, 2019, 26 : 599 - 609
  • [29] Propane burning in argon, carbon dioxide, and water vapor at increased pressure
    Fedyaeva, O. N.
    Artamonov, D. O.
    Sokol, M. Ya
    Vostrikov, A. A.
    THERMOPHYSICS AND AEROMECHANICS, 2019, 26 (04) : 599 - 609
  • [30] Adsorption of carbon dioxide on modified mesoporous materials in the presence of water vapor
    Hiyoshi, N
    Yogo, K
    Yashima, T
    RECENT ADVANCES IN THE SCIENCE AND TECHNOLOGY OF ZEOLITES AND RELATED MATERIALS, PTS A - C, 2004, 154 : 2995 - 3002